Hole/electron transport layers in tin-doped SBLN nano materials for hybrid solar cell applications

  • Anurag Pritam
  • Vaibhav ShrivastavaEmail author


In this work, layered perovskite SBN was investigated in a new-doped form for hole as well as electron transport layer (HTL/ETL) in perovskite solar cells. This work was targeted to determine utility of bismuth layer SBN materials as an active layer in hybrid perovskite solar cells. Thoroughly hard ball-milled compositions Sr1−xSnxBi1.95La0.05Nb2O9 (x = 0.0, 0.01, 0.03, 0.05, 0.1 and 0.2) were prepared by microwave synthesis to obtain fine (~ 10–60 nm) mesoporous particle network of atomic level substitutions. Microwave synthesis was crucial in modifying dielectric, semiconducting and optical characteristics of prepared SBN materials. The optical energy band gap and hall resistivity decreased in continuous manner on tin doping. The role of metallic tin as dopant in sharpening redox peaks and decreasing capacitive reactance of grain boundaries was investigated in detail using cyclic voltammetry and impedance spectroscopy respectively. The tin being more polar covalent than strontium augmented dielectric response too.



The authors gratefully acknowledge the contributions of Dr. S. Amirthpandian (IGCAR-Kalapakkam) for providing HRTEM-EDS data. Authors also deeply acknowledge the contribution of Dr. S. S. Roy (SNU) for providing us cyclic voltammetry data and helping to prepare result analysis. One of the authors, Anurag Pritam, also acknowledges the gratitude towards Shiv Nadar Foundation for providing research fellowship.

Supplementary material

10854_2019_1447_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)
10854_2019_1447_MOESM2_ESM.tif (555 kb)
Supplementary material 2 (TIFF 554 kb)
10854_2019_1447_MOESM3_ESM.txt (2 kb)
Supplementary material 3 (TXT 1 kb)
10854_2019_1447_MOESM4_ESM.tif (105 kb)
Supplementary material 4 (TIFF 104 kb)


  1. 1.
    C.A.P. de Arauzo, J.F. Scott, Ferroelectric memories. Science 246, 1400 (1989)CrossRefGoogle Scholar
  2. 2.
    Y. Wu, G. Coa, Ferroelectric and dielectric properties of strontium bismuth niobate vanadates. J. Mater. Res. 15, 1583–1590 (2000)CrossRefGoogle Scholar
  3. 3.
    P. Nayak, T. Bandapanda, A.K. Singh, S. Panigrahi, An approach or correlating the structural and electrical properties of Zr4+ modified SrBi4Ti4O15/SBT ceramic. RSC Adv. 7, 16319 (2017)CrossRefGoogle Scholar
  4. 4.
    B.H. Venkataraman, K.B.R. Verma, Structural, dielectric, pyroelectric and ferroelectric properties of glass nano composite lithium borate-strontium bismuth vanadium niobate. Ferroelectr. Lett. 33, 3–4 (2006)CrossRefGoogle Scholar
  5. 5.
    N. Park, Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65–72 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, MdK Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011)CrossRefGoogle Scholar
  7. 7.
    B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991)CrossRefGoogle Scholar
  8. 8.
    Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, F. Izumi, Crystal structure and ferroelectric properties of ABi2Ta2O9 (A = Ca, Sr, and Ba). Phys. Rev. B 61, 10 (2000)CrossRefGoogle Scholar
  9. 9.
    J.H. Lee, J. Hoon Lee, E.H. Kong, H.M. Jang, The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3. Sci. Rep. 21687, 6 (2016)Google Scholar
  10. 10.
    T.S. Velayutham, N.I.F. Salim, W.C. Gan, W.A. Majid, Effect of cerium addition on the microstructure, electrical and relaxor behavior of Sr0. 5Ba0. 5Nb2O6 ceramics. J. Alloys Compd. 666, 334–340 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Miyazawa, E. Natori, S. Miyashita, T. Shimoda, F. Ishii, T. Oguchi, Electronic states of perovskite-type oxides and ferroelectricity. Jpn. J. Appl. Phys. 39, 5679 (2000)CrossRefGoogle Scholar
  12. 12.
    D.B. Williams, C.B. Carter, Transmission Electron Microscopy (Plenum Press, Berlin, 1996), pp. 267–278CrossRefGoogle Scholar
  13. 13.
    J.D. Ng, B. Lorber, J. Witz, A. Théobald-Dietrich, D. Kern, R. Giegé, The crystallization of biological macromolecules from precipitates: evidence for ostwald ripening. J. Cryst. Growth 168, 50–62 (1996)CrossRefGoogle Scholar
  14. 14.
    M. Moret, R. Zallen, R. Newnham, Infrared activity in the Aurivillius layered ferroelectric SrBi2Ta2O9. Phys. Rev. B 57, 5715–5723 (1998)CrossRefGoogle Scholar
  15. 15.
    P. Mohanapriya, R. Pradeepkumar, N.V. Jaya, T.S. Natarajan, Magnetic and optical properties of electrospun hollow nanofibers of SnO2 doped with Ce-ion. Appl. Phys. Lett. 105, 022406 (2014)CrossRefGoogle Scholar
  16. 16.
    W. Li, A. Thirumurugan, P.T. Barton, Z. Lin, S. Henke, H.H.M. Yeung, M.T. Wharmby, E.G. Bithell, C.J. Howard, A.K. Cheetham, Mechanical tunability via hydrogen bonding in metal–organic frameworks with the perovskite architecture. J. Am. Chem. Soc. 136, 7801–7804 (2014)CrossRefGoogle Scholar
  17. 17.
    L.J. Burcham, J. Datka, I.E. Wachs, In-situ Vibrational spectroscopy studies of supported niobium oxide catalysts. J. Phys. Chem. B 103, 6015–6024 (1999)CrossRefGoogle Scholar
  18. 18.
    J. Coates. Interpretation of infrared spectra: a practical approach. Encycl. Anal. Chem. 1–23 (2006)Google Scholar
  19. 19.
    M.J. Forbess, S. Seraji, Y. Wu, C.P. Nguyen, G.Z. Cao, Dielectric properties of layered perovskite Sr1-x AxBi2Nb2O9 ferroelectrics (A = La, Ca and x = 0.0,0.1). Appl. Phys. Lett. 76, 2934–2936 (2000)CrossRefGoogle Scholar
  20. 20.
    S.N. Kumar, P. Kumar, D.K. Agrawal, Structural, dielectric and ferroelectric properties of SBN ceramics synthesized by microwave reactive sintering technique. Ceram. Int. 38, 5243–5250 (2012)CrossRefGoogle Scholar
  21. 21.
    Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, G. Cao, Impedance study of SrBi2Ta2O9 and SrBi2 (Ta0.9V0.1)2O9 ferroelectrics. Mater. Sci. Eng. B 86, 70 (2001)CrossRefGoogle Scholar
  22. 22.
    D. Kajewski, Z. Ujma, Electrical properties of SrBi2(Nb0.5Ta0.5)2O9 ceramics. J. Phys. Chem. Solids 71, 24–29 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Zhu, W.-P. Lu, X.-Y. Mao, R. Hui, X.-B. Chen, Study on properties of lanthanum distribution of Bi4-xLaxTi3O12-SrBi4-yLayTi4O15 intergrowth ferroelectrics. Jpn. J. Appl. Phys. 42, 5165–5168 (2003)CrossRefGoogle Scholar
  24. 24.
    I. Coondoo, N. Panwar, A. Tomar, A.K. Jha, S.K. Agarwal, Impedance spectroscopy and conductivity studies in SrBi2(Ta1−xWx)2O9 ferroelectric ceramics. Phys. B 407, 4712–4720 (2012)CrossRefGoogle Scholar
  25. 25.
    K. Sambasiva Rao, D. Madhava Prasad, P. Murali Krishna, B. Hima Bindu, K. Suneetha, Frequency and temperature dependence of electrical properties of barium and gadolinium substituted SrBi2Nb2O9 ceramics. J. Mater. Sci. 42, 7363–7374 (2007)CrossRefGoogle Scholar
  26. 26.
    K. Srinivas, P. Sarah, S.V. Suryanarayana, Impedance spectroscopy study of polycrystalline Bi6 Fe2 Ti3 O18. Bull. Mater. Sci. 26, 247–253 (2003)CrossRefGoogle Scholar
  27. 27.
    N.V. Prasad, V.S. Puli, D.K. Pradhan, S.M. Gupta, G. Prasad, R.S. Katiyar, G.S. Kumar, Impedance and Raman Spectroscopic Studies on La-modified BLSF Ceramics. Ferroelectrics 474, 29–42 (2015)CrossRefGoogle Scholar
  28. 28.
    R. Singh, V. Luthra, R.S. Rawat, R.P. Tandon, Structural, dielectric and piezoelectric properties of SrBi2Nb2O9 and Sr0.8Bi2.2Nb2O9 ceramics. Ceram. Int. 41, 4468–4478 (2015)CrossRefGoogle Scholar
  29. 29.
    M.P. Dasari, K. Sambasiva Rao, P. Murali Krishna, G. Gopala Krishna, Barium strontium bismuth niobate layered perovskites: dielectric, impedance and electrical modulus characteristics. Acta Phys. Pol. A 119, 387–394 (2011)CrossRefGoogle Scholar
  30. 30.
    Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, C. Nguyen, G. Cao, Doping effect in layer structured SrBi2Nb2O9 ferroelectrics. J. Appl. Phys. 90, 5296–5302 (2001)CrossRefGoogle Scholar
  31. 31.
    P. Wang, L. Yao, M. Wang, W. Wu, XPS and voltammetric studies on La1−xSrxCoO3−δ perovskite oxide electrodes. J. Alloys Compd. 311, 53–56 (2000)CrossRefGoogle Scholar
  32. 32.
    S. Deshmukh, G. Kandasamy, R.K. Upadhyay, G. Bhattacharya, D. Banerjee, D. Maity, M.A. Deshusses, S.S. Roy, Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. J. Electroanal. Chem. 788, 91–98 (2017)CrossRefGoogle Scholar
  33. 33.
    Y. Zheng, F. Duan, J. Wu, L. Liu, M. Chen, Y. Xie, Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed 0 1 0 surface under visible light irradiation. J. Mol. Catal. A 303, 9–14 (2009)CrossRefGoogle Scholar
  34. 34.
    M. Zhang, C. Shao, P. Zhang, C. Su, X. Zhang, P. Liang, Y. Sun, Y. Liu, Bi2MoO6 microtubes: controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity. J. Hazard. Mater. 225–226, 155–163 (2012)CrossRefGoogle Scholar
  35. 35.
    J.H. Kim, K.T. Hwang, U.S. Kim, Y.M. Kang, Photocatalytic characteristics of immobilized SrBi2Nb2O9 film for degradation of organic pollutants. Ceram. Int. 38, 3901–3906 (2012)CrossRefGoogle Scholar
  36. 36.
    S. Yang, W. Fu, Z. Zhang, H. Chen, C.-Z. Li, Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater. Chem. A 5, 11462 (2017)CrossRefGoogle Scholar
  37. 37.
    Y. Bai, S. Xiao, C. Hu, T. Zhang, X. Meng, Q. Li, Y. Yang, K.S. Wong, H. Chen, S. Yang, A pure and stable intermediate phase is key to growing aligned and vertically monolithic perovskite crystals for efficient PIN planar perovskite solar cells with high processibility and stability. Nano Energy 34, 58 (2017)CrossRefGoogle Scholar
  38. 38.
    N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, H.J. Snaith, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dielectric LaboratoryShiv Nadar UniversityGreater NoidaIndia

Personalised recommendations