Efficient formamidinium–methylammonium lead halide perovskite solar cells using Mg and Er co-modified TiO2 nanorods

  • Jianfeng Zheng
  • Xueshuang Deng
  • Xin Zhou
  • Meidong Yu
  • Zhetao Xia
  • Xiaohong Chen
  • Sumei HuangEmail author


We report a strategy to fabricate high quality TiO2 nanrod array ETLs for efficient PSC devices with Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 triple cation composition perovskite as light absorption material. Mg doped compact TiO2 (c-TiO2) was employed as seeds for hydrothermal growth of one-dimensional (1D) TiO2 nanorod (NR) arrays. Assisted with these seed layers, Mg and Er doped TiO2 rutile NR arrays were synthesized using tetrabutyltitanate (TBT) and Er(NO3)3 as Ti and Er precursors, respectively. It was found that uniform, straight and vertical TiO2 NRs with a high area density were formed using Mg and Er co-modification, improving the pore-filling and crystallization of the triple cation perovskites, facilitating charge separation and suppressing recombination at the perovskite/titania NR interface of the PSC device. The shorter PL decay time with Mg/Er doping compared to the cases without Mg or Er doping is assigned to the more excellent electron extraction from the mixed cation perovskite film. The control device without modification shows an average power conversion efficiency (PCE) of 17.10%. Under the same fabrication conditions, doping of the single element Er or Mg or both Mg and Er enhances the average PCE to 17.54, 18.41 and 18.99% respectively. Our champion cell based on Mg/Er modified TiO2 NR arrays demonstrates a PCE of 19.11%, exhibiting an enhancement of 10.33% compared with that of the PSCs based on unmodified TiO2 NR arrays (17.32%). This work provides a simple and efficient interface engineering method to improve the efficiency of the mixed cation PSCs.



This work was supported by Natural Science Foundation of Shanghai (Nos. 18ZR1411900, 18ZR1411000) and National Natural Science Foundation of China (No. 11274119).


  1. 1.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  2. 2.
    National Renewable Energy Laboratory (NREL) (2019), Accessed April 2019
  3. 3.
    M. Afzaal, H.M. Yates, A. Walter, S. Nicolay, C. Ballif, J. Mater. Chem. C 5, 4946–4950 (2017)CrossRefGoogle Scholar
  4. 4.
    M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Prog. Photovolt. 26, 427 (2018)CrossRefGoogle Scholar
  5. 5.
    J.H. Shi, Z.Q. Li, D.W. Zhang, Q.Q. Liu, Z. Sun, S.M. Huang, Prog. Photovolt. 19, 160 (2011)CrossRefGoogle Scholar
  6. 6.
    H.S. Jun, N.G. park, Small 11, 10 (2015)CrossRefGoogle Scholar
  7. 7.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8, 506 (2014)CrossRefGoogle Scholar
  8. 8.
    M.M. Lee, T. Joël, M. Tsutomu, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)CrossRefGoogle Scholar
  9. 9.
    C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Nano-Micro Lett. 8, 347 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, Energy Environ. Sci. 9, 1989 (2016)CrossRefGoogle Scholar
  11. 11.
    Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, S. Huang, ACS Appl. Mater. Inter. 9, 34821 (2017)CrossRefGoogle Scholar
  12. 12.
    X. Feng, K. Zhu, A.J. Frank, C.A. Grimes, T.E. Mallouk, Angew. Chem. 124, 2781 (2012)CrossRefGoogle Scholar
  13. 13.
    J. Qiu, Y. Qiu, K. Yan, M. Zhong, M. Cheng, H. Yan, S. Yang, Nanoscale 5, 3245 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Choi, S. Song, M.T. Hörantner, H.J. Snaith, T. Park, ACS Nano 10, 6029 (2016)CrossRefGoogle Scholar
  15. 15.
    C. Liu, R. Zhu, A. Ng, Z. Ren, S.H. Cheung, L. Du, S.K. So, J.A. Zapien, A.B. Djurišić, D.L. Phillips, J. Mater. Chem. A 5, 15970 (2017)CrossRefGoogle Scholar
  16. 16.
    K. Mahmood, B.S. Swain, A.R. Kirmani, A. Amassian, J. Mater. Chem. A 3, 9051 (2015)CrossRefGoogle Scholar
  17. 17.
    K. Mahmood, B.S. Swain, A. Amassian, Adv. Energy Mater. 5, 1500568 (2015)CrossRefGoogle Scholar
  18. 18.
    Z. Gu, F. Chen, X. Zhang, Y. Liu, C. Fan, G. Wu, H. Li, H. Chen, Sol. Energy Mater. Sol. Cells 140, 396 (2015)CrossRefGoogle Scholar
  19. 19.
    Y.B. Cheng, W.Q. Wu, D. Chen, R. Caruso, J. Mater. Chem. A 5, 10092 (2017)CrossRefGoogle Scholar
  20. 20.
    C. Zhang, X. Deng, J. Zheng, X. Zhou, J. Shi, X. Chen, Z. Sun, S. Huang, Electrochim. Acta 283, 1134 (2018)CrossRefGoogle Scholar
  21. 21.
    P. Strange, A. Svane, W.M. Temmerman, Z. Szotek, H. Winter, Nature 399, 756 (1999)CrossRefGoogle Scholar
  22. 22.
    H. Hoda, W. Jihuai, L. Zhang, L. Qinghua, X. Guixiang, L. Jianming, H. Miaoliang, H. Yunfang, M.S. Abdel-Mottaleb, Nanotechnology 21, 415201 (2010)CrossRefGoogle Scholar
  23. 23.
    L. Jing, X. Sun, B. Xin, B. Wang, W. Cai, H. Fu, J. Solid State Chem. 177, 3375 (2004)CrossRefGoogle Scholar
  24. 24.
    C.P. Sibu, S.R. Kumar, P. Mukundan, K.G.K. Warrier, Chem. Mater. 14, 2876 (2002)CrossRefGoogle Scholar
  25. 25.
    S. Yahav, S. Rühle, S. Greenwald, H.N. Barad, M. Shalom, A. Zaban, J. Phys. Chem. C 115, 21481 (2011)CrossRefGoogle Scholar
  26. 26.
    B. Choudhury, B. Borah, A. Choudhury, Mat. Sci. Eng. B 178, 239 (2013)CrossRefGoogle Scholar
  27. 27.
    P. Qin, A.L. Domanski, A.K. Chandiran, R. Berger, H.-J. Butt, M.I. Dar, T. Moehl, N. Tetreault, P. Gao, S. Ahmad, M.K. Nazeeruddin, M. Grätzel, Nanoscale 6, 1508 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Roose, K.C. Gödel, S. Pathak, A. Sadhanala, J.P.C. Baena, B.D. Wilts, H.J. Snaith, U. Wiesner, M. Grätzel, U. Steiner, Adv. Energy Mater. 6, 1501868 (2016)CrossRefGoogle Scholar
  29. 29.
    Q. Cui, X. Zhao, H. Lin, L. Yang, H. Chen, Y. Zhang, X. Li, Nanoscale 9, 18897 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, G. Grancini, Y. Feng, A.M. Asiri, M.K. Nazeeruddin, ACS Energy Lett. 2, 802 (2017)CrossRefGoogle Scholar
  31. 31.
    J.F. Li, Z.L. Zhang, H.P. Gao, Y. Zhang, Y.L. Mao, J. Mater. Chem. A 3, 19476 (2015)CrossRefGoogle Scholar
  32. 32.
    C. Zhang, Q. Luo, J. Shi, L. Yue, Z. Wang, X. Chen, S. Huang, Nanoscale 9, 2852 (2017)CrossRefGoogle Scholar
  33. 33.
    F. Giordano, A. Abate, J.P.C. Baena, M. Saliba, T. Matsui, H.I. Sang, S.M. Zakeeruddin, M.K. Nazeeruddin, A. Hagfeldt, M. Grätzel, Nat. Commun. 7, 10379 (2016)CrossRefGoogle Scholar
  34. 34.
    C. Zhang, Y. Luo, X. Chen, O.Y. Wei, Y. Chen, Z. Sun, S. Huang, Appl. Surf. Sci. 388, 82 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Liu, M. Jia, H. Pan, L. Li, M. Chang, H. Ren, F. Argoul, S. Zhang, J. Xu, Appl. Spectrosc. 68, 577 (2014)CrossRefGoogle Scholar
  36. 36.
    B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)CrossRefGoogle Scholar
  37. 37.
    I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Nano Lett. 11, 4978 (2011)CrossRefGoogle Scholar
  38. 38.
    A. Kumar, A.R. Madaria, C. Zhou, J. Phys. Chem. C 114, 7787 (2010)CrossRefGoogle Scholar
  39. 39.
    J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, L. Qi, Energy Environ. Sci. 5, 7575 (2012)CrossRefGoogle Scholar
  40. 40.
    Q. Jiang, X. Sheng, Y. Li, X. Feng, T. Xu, Chem. Commun. 50, 14720 (2014)CrossRefGoogle Scholar
  41. 41.
    S.S. Mali, S.S. Chang, K.P. Hui, J. Heo, K.H. Chang, Chem. Mater. 27, 1541 (2015)CrossRefGoogle Scholar
  42. 42.
    X. Li, S.M. Dai, P. Zhu, L.L. Deng, S.Y. Xie, Q. Cui, H. Chen, N. Wang, H. Lin, ACS. Appl. Mater. Inter. 8, 21358 (2016)CrossRefGoogle Scholar
  43. 43.
    A. Kulkarni, A.K. Jena, H.W. Chen, Y. Sanehira, M. Ikegami, T. Miyasaka, Sol. Engery 136, 379 (2016)CrossRefGoogle Scholar
  44. 44.
    H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N.G. Park, Nano Lett. 13, 2412 (2013)CrossRefGoogle Scholar
  45. 45.
    X. Wang, Z. Zhang, J. Qin, W. Shi, Y. Liu, H. Gao, Y. Mao, Electrochim. Acta 245, 839 (2017)CrossRefGoogle Scholar
  46. 46.
    W. Li, A. Frenkel, J.C. Woicik, C. Ni, S.I. Shah, Phys. Rev. B 72, 155315 (2005)CrossRefGoogle Scholar
  47. 47.
    W. Wang, J. Dong, X. Ye, Y. Li, Y. Ma, L. Qi, Small 12, 1469 (2016)CrossRefGoogle Scholar
  48. 48.
    J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. Xiong, H. Lei, H. Yu, Appl. Phys. Lett. 106, 591 (2015)Google Scholar
  49. 49.
    H.H. Jin, H.I. Sang, J.H. Noh, T.N. Mandal, C.S. Lim, J.A. Chang, H.L. Yong, H.J. Kim, A. Sarkar, M.K. Nazeeruddin, Nat. Photonics 7, 486 (2013)CrossRefGoogle Scholar
  50. 50.
    H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.-G. Park, J. Bisquert, Nat. Commun. 4, 2242 (2013)CrossRefGoogle Scholar
  51. 51.
    J.H. Heo, D.H. Song, H.J. Han, S.Y. Kim, J.H. Kim, D. Kim, H.W. Shin, T.K. Ahn, C. Wolf, T.W. Lee, S.H. Im, Adv. Mater. 27, 3424 (2015)CrossRefGoogle Scholar
  52. 52.
    D. Bi, W. Tress, M.I. Dar, G. Peng, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.P.C. Baena, Sci. Adv. 2, e1501170 (2016)CrossRefGoogle Scholar
  53. 53.
    Y. Hou, X. Chen, S. Yang, C. Li, H. Zhao, H.G. Yang, Adv. Funct. Mater. 27, 1700878 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials ScienceEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations