CNC assisted spray deposition of large grain size CH3NH3PbI3 film for perovskite solar cells

  • Thanh-Tung DuongEmail author
  • Tat-Dat Tran
  • Quoc-Tuan Le


This work presents a utilization of spray deposition technique in the fabrication of thin film perovskite solar cell devices with an assistance of a homemade CNC machine. An 80 nm-thick compact TiO2 was sprayed at a substrate temperature of 400 °C for electron blocking layer. Both one and two-step spray deposition technique are used to compare the quality of the perovskite absorber layer. A large grain size and voids free CH3NH3PbI3 film achieved by using the two-step spray deposition process. When such films are incorporated into a solar cell device with conductive carbon counter electrode, the maximum power conversion efficiencies of up to 9.58% are realized. This approach could pave the way to develop low-cost perovskite solar cell.



This research was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.02-2015.49.


  1. 1.
    Q. Le, K. Hong, H. Jang, S. Kim, Halide Perovskite quantum dots for light-emitting diodes: properties, synthesis, applications, and outlooks. Adv. Electron. Mater. 4, 12 (2018)CrossRefGoogle Scholar
  2. 2.
    Y. Zhang, W. Jie, P. Chen, W. Liu, J. Hao, Ferroelectric and piezoelectric effects on the optical process in advanced materials and devices. Adv. Mater. 30, 34 (2018)Google Scholar
  3. 3.
    A. Filippetti, C. Caddeo, P. Delugas, A. Mattoni, Appealing perspectives of hybrid lead-iodide perovskites as thermoelectric materials. J. Phys. Chem. C 120(50), 28472–28479 (2016)CrossRefGoogle Scholar
  4. 4.
    N. Wang, W. Liu, Q. Zhang, Perovskite-based nanocrystals: synthesis and applications beyond solar cells. Small Methods 2, 6 (2018)Google Scholar
  5. 5.
    X. Zhao, J. Andrew Ag, R. Friend, Z. Tan, Opportunities and challenges in perovskite light-emitting devices. ACS Photonics 5(10), 3866–3875 (2018)CrossRefGoogle Scholar
  6. 6.
    S. Maiti, S. Karan, J. Kim, B. Khatua, Nature driven bio-piezoelectric/triboelectric nanogenerator as next-generation green energy harvester for smart and pollution free society. Adv. Energy Mater. 9(9), 1803027 (2019)CrossRefGoogle Scholar
  7. 7.
    A. Kojima, K. Teshima, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)CrossRefGoogle Scholar
  8. 8.
    H. Kim, A. Hagfeldt, N. Park, Morphological and compositional progress in halide perovskite solar cells. Chem. Commun. 55, 1192–1200 (2019)CrossRefGoogle Scholar
  9. 9.
    M. Liu, M. Johnston, H. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Su, H. Cai, X. Ye, X. Zhou, J. Yang, D. Wang, J. Ni, J. Li, J. Zhang, Efficient perovskite solar cells prepared by hot air blowing to ultrasonic spraying in ambient air. ACS Appl. Mater. Interfaces 11(11), 10689–10696 (2019)CrossRefGoogle Scholar
  11. 11.
    F. Huang, M. Li, P. Siffalovic, G. Cao, J. Tian, Performance and stability of co-evaporated vapor deposited perovskite solar cells. Energy Environ. Sci. 12, 518–549 (2019)CrossRefGoogle Scholar
  12. 12.
    Y. Liang, Y. Yao, X. Zhang, W. Hsu, Y. Gong, J. Shin, E. Wachsman, M. Dagenais, I. Takeuchi, Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition. AIP Adv. 6, 015001 (2016)CrossRefGoogle Scholar
  13. 13.
    R. Kottokkaran, H. Gaonkar, H. Abbas, M. Noack, V. Dalal, Performance and stability of co-evaporated vapor deposited perovskite solar cells. J. Mater. Sci.: Mater. Electron. 30(6), 5487–5494 (2019)Google Scholar
  14. 14.
    J. Chen, S. Kim, N. Park, FA0.88Cs0.12PbI3−x(PF6)x Interlayer formed by ion exchange reaction between perovskite and hole transporting layer for improving photovoltaic performance and stability. Adv. Mater. 30(40), 1801948 (2018)CrossRefGoogle Scholar
  15. 15.
    D. Son, J. Lee, Y. Choi, I. Jang, S. Lee, P. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, N. Park, Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Li, C. Chang, Y. Wang, C. Lin, D. Wang, J. Lin, C. Chen, H. Sheu, H. Chia, W. Wu, U. Jeng, C. Liang, R. Sankar, F. Chou, C. Chen, Energy Environ. Sci. 9, 1282–1289 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. Nazeeruddin, M. Grätzel, T. Moehl, Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014)CrossRefGoogle Scholar
  18. 18.
    Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 7, 2359–2365 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J. Kim, Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale 6, 6679–6683 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Chen, X. Ding, X. Pan, T. Hayat, A. Alsaedi, Y. Ding, S. Dai, Comprehensive studies of air-brush spray deposition used in fabricating high-efficiency CH3NH3PbI3 perovskite solar cells: combining theories with practices. J. Power Sources 402, 82–90 (2018)CrossRefGoogle Scholar
  21. 21.
    A. Barrows, A. Pearson, K. Chan, A. Dunbar, A. Buckley, D. Lidzey, Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7, 2944–2950 (2014)CrossRefGoogle Scholar
  22. 22.
    H. Jin, M. Lee, H. Min, H. Sang, Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J. Mater. Chem. 4, 17636–17642 (2016)CrossRefGoogle Scholar
  23. 23.
    K. Boopathi, R. Mohan, T. Huang, W. Budiawan, M. Lin, C. Lee, K. Ho, C. Chu, Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. J. Mater. Chem. A 4, 1591–1597 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Yang, Z. Yuan, X. Liu, S. Braun, Y. Li, J. Tang, F. Gao, C. Duan, M. Fahlman, Q. Bao, Oxygen- and water-induced energetics degradation in organometal halide perovskites. ACS Appl. Mater. Interfaces. 10(18), 16225–16230 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST)HanoiVietnam

Personalised recommendations