Potential of zinc oxide nanowhiskers as antireflection coating in crystalline silicon solar cell for cost effectiveness

  • Jayasree Roy Sharma
  • Pritam Banerjee
  • Suchismita Mitra
  • Hemanta Ghosh
  • Sukanta Bose
  • Gourab DasEmail author
  • Sumita Mukhopadhyay


Antireflection coatings play an important role in enhancing the performance of crystalline silicon solar cells by increasing the light coupling into the active region of the devices. In this work we investigated the effects of seed layer thickness and growth time on the reflection properties of solution-grown zinc oxide nanowhiskers. Our results reveal the potential of zinc oxide nanowhiskers as antireflection coating in crystalline silicon solar cells as investigated herein. With this efficient antireflection coating, we have presented a hierarchical structure integrating zinc oxide nanowhisker arrays on silicon micropyramids for improving the energy conversion efficiency. This structure displays broadband reflection suppression in the 300–1200 nm range, with an integrated reflectance of 2.28%. A conversion efficiency of 13.3% was obtained, which is significantly high for large area (3″ × 3″) solar cell fabricated using zinc oxide nanowhiskers as the antireflection coating layer.



This work has been supported by the Ministry of New and Renewable Energy (MNRE) (31/40/2010-11/PVSE), Govt. of India, Department of Science and Technology (DST) (DST/TM/CERI/D09 (G)). The authors are highly obliged to Prof. A.K. Barua for his enormous support, guidance and help. The authors are also grateful to Prof. H Saha, Principal Investigator of the project for his encouragement and help.


  1. 1.
    W.L. Min, B. Jiang, P. Jiang, Adv. Mater. 20(20), 3914–3918 (2008)CrossRefGoogle Scholar
  2. 2.
    S.L. Diedenhofen, G. Vecchi, R.E. Algra, A. Hartsuiker, O.L. Muskens, G. Immink, E. Bakkers, W.L. Vos, J.G. Rivas, Adv. Mater. 21(9), 973–978 (2009)CrossRefGoogle Scholar
  3. 3.
    J. Szlufcik, K. De Clercq, P. De Schepper, J. Poortmans, A. Buczkowski, J, Nijs, in Proceedings of the 12th European Photovoltaic Solar Energy Conference, Amsterdam. (1994) pp. 1018–1021Google Scholar
  4. 4.
    M. Cid, N. Stem, C. Brunetti, A.F. Beloto, C.A.S. Ramos, Surf. Coat. Technol. 106(2–3), 117–120 (1998)CrossRefGoogle Scholar
  5. 5.
    B.S. Richards, Sol. Energy Mater. Sol. Cells 79(3), 369–390 (2003)CrossRefGoogle Scholar
  6. 6.
    Z. Chen, P. Sana, J. Salami, A. Rohatgi, IEEE Trans. Electron Dev. 40(6), 1161–1165 (1993)CrossRefGoogle Scholar
  7. 7.
    X. Li, J. Gao, L. Xue, Y. Han, Adv. Funct. Mater. 20(2), 259–265 (2010)CrossRefGoogle Scholar
  8. 8.
    H.K. Singh, P. Sharma, C.S. Solanki, Plasmonics. 9(6), 1409–1416 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Ghosh, S. Mitra, S. Dhar, A. Nandi, S. Majumdar, H. Saha, S.K. Datta, C. Banerjee, Plasmonics. 12(6), 1761–1772 (2017)CrossRefGoogle Scholar
  10. 10.
    Y.J. Lee, D.S. Ruby, D.W. Peters, B.B. McKenzie, J.W. Hsu, Nano Lett. 8(5), 1501–1505 (2008)CrossRefGoogle Scholar
  11. 11.
    C.C. Chung, B.T. Tran, K.L. Lin, Y.T. Ho, H.W. Yu, N.H. Quan, E.Y. Chang, Nano Res. Lett. 9(1), 338 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Song, M. Zheng, L. Ma, W. Shen, J. Nanosci. Nanotechnol. 10(1), 426–432 (2010)CrossRefGoogle Scholar
  13. 13.
    P.X. Gao, Z.L. Wang, J. Phys. Chem. B 108(23), 7534–7537 (2004)CrossRefGoogle Scholar
  14. 14.
    T.H. Ghong, Y.D. Kim, E. Ahn, E. Yoon, S.J. An, G.-C. Yi, Appl. Surf. Sci. 255(3), 746–748 (2008)CrossRefGoogle Scholar
  15. 15.
    J.Y. Chen, K.W. Sun, Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010)CrossRefGoogle Scholar
  16. 16.
    Y. Liu, A. Das, S. Xu, Z. Lin, C. Xu, Z.L. Wang, A. Rohatgi, C.P. Wong, Adv. Energy Mater. 2(1), 47–51 (2012)CrossRefGoogle Scholar
  17. 17.
    X. Yu, D. Wang, D. Lei, G. Li, D. Yang, Nanoscale Res. Lett. 7(1), 306 (2012)CrossRefGoogle Scholar
  18. 18.
    P. Aurang, O. Demircioglu, F. Es, R. Turan, H.E. Unalan, J. Am. Ceram. Soc. 96(4), 1253–1257 (2013)CrossRefGoogle Scholar
  19. 19.
    L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003)CrossRefGoogle Scholar
  20. 20.
    L. Vayssieres, K. Keis, A. Hagfeldt, S.-E. Lindquist, Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 13, 4395–4398 (2001)CrossRefGoogle Scholar
  21. 21.
    A. Sugunan, H. Warad, M. Boman, J. Dutta, Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine. J. Sol-Gel. Sci. Technol. 39, 49–56 (2006)CrossRefGoogle Scholar
  22. 22.
    S. Xu, Z. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011)CrossRefGoogle Scholar
  23. 23.
    A. Zainelabdin, S. Zaman, G. Amin, O. Nur, M. Willander, Deposition of well-aligned ZnO nanorods at 50 °C on metal, semiconducting polymer, and copper oxides substrates and their structural and optical properties. Cryst. Growth Des. 10, 3250–3256 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre of Excellence for Green Energy and Sensor SystemsIndian Institute of Engineering Science & TechnologyShibpur, HowrahIndia
  2. 2.Chaibasa Engineering CollegeWest SinghbhumIndia

Personalised recommendations