Advertisement

Structural, optical and Schottky diode properties of Cu2ZnSnS4 thin films grown by two-stage method

  • Y. AtasoyEmail author
  • M. A. Olgar
  • E. Bacaksiz
Article
  • 29 Downloads

Abstract

CZTS thin film was prepared by a two-stage process comprising sputter deposition of metallic Cu, Zn, and Sn layers followed annealing treatment of the metallic precursors in a sulfur atmosphere at 560 °C for 3 min. The CZTS thin film was investigated in the way of structural, optical and electrical properties. The XRD pattern of Cu-poor and Zn-rich CZTS thin film was dominated by characteristic peaks of kesterite CZTS planes. Raman spectra of the film ensured formation of kesterite CZTS phase and displayed formation of CTS and ZnS phases. Dense and polycrystalline surface features were observed in SEM images of CZTS thin film. Band–band transitions was not observed due to the probable concentration of deep acceptor levels in this material. The diode parameters of Mo/CZTS/Al structure such as ideality factor, barrier height and serial resistance were calculated employing temperature dependent IV characteristics of Mo/CZTS/Al diode structure.

Notes

References

  1. 1.
    T. Kato, J.L. Wu, Y. Hirai, H. Sugimoto, V. Bermudez, IEEE J. Photovolt. 9, 325 (2019).  https://doi.org/10.1109/Jphotov.2018.2882206 CrossRefGoogle Scholar
  2. 2.
    M. Olgar, J. Klaer, R. Mainz et al., Thin Solid Films 615, 402 (2016)CrossRefGoogle Scholar
  3. 3.
    S. van Duren, D. Sylla, A. Fairbrother et al., Sol. Energ Mat. Sol. C 185, 226 (2018)CrossRefGoogle Scholar
  4. 4.
    M. Beres, K. Yu, J. Syzdek, S. Mao, Mater. Chem. Phys. 205, 90 (2018)CrossRefGoogle Scholar
  5. 5.
    X. Yuan, S. Xue, J. Liao, F. Peng, L. Shao, J. Zhang, Mater. Res. Express 5, 016413 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Valdés, M.F. Pascual-Winter, A. Bruchhausen, W. Schreiner, M. Vázquez, Phys. Status Solidi 215, 1800639 (2018)CrossRefGoogle Scholar
  7. 7.
    C.J. Hages, M.J. Koeper, R. Agrawal, Sol. Energ. Mat. Sol. C 145, 342 (2016)CrossRefGoogle Scholar
  8. 8.
    C.I. Mary, M. Senthilkumar, S.M. Babu, J. Mater. Sci. 29, 9751 (2018)Google Scholar
  9. 9.
    K. Solt, H. Melchior, U. Kroth et al., Appl. Phys. Lett. 69, 3662 (1996)CrossRefGoogle Scholar
  10. 10.
    C.-T. Kuo, W.-H. Chiou, Synth. Met. 88, 23 (1997)CrossRefGoogle Scholar
  11. 11.
    B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)CrossRefGoogle Scholar
  12. 12.
    B. Theys, T. Klinkert, F. Mollica et al., Phys. Status Solidi 213, 2425 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Chan, I. Shih, J. Appl. Phys. 68, 156 (1990)CrossRefGoogle Scholar
  14. 14.
    H. Tecimer, S. Aksu, H. Uslu, Y. Atasoy, E. Bacaksız, Ş. Altındal, Sens. Actuators A 185, 73 (2012)CrossRefGoogle Scholar
  15. 15.
    A. Tombak, Y.S. Ocak, M.F. Genişel, T. Kilicoglu, Mater. Sci. Semicond. Process. 28, 98 (2014)CrossRefGoogle Scholar
  16. 16.
    V.R. Reddy, V. Janardhanam, J. Won, C.-J. Choi, J. Colloid Interface Sci. 499, 180 (2017)CrossRefGoogle Scholar
  17. 17.
    R. Touati, I. Trabelsi, M.B. Rabeh, M. Kanzari, J. Mater. Sci. 28, 5315 (2017)Google Scholar
  18. 18.
    A. Rakhshani, S. Thomas, J. Electron. Mater. 44, 4760 (2015)CrossRefGoogle Scholar
  19. 19.
    F. Boutebakh, M.L. Zeggar, N. Attaf, M. Aida, Optik 144, 180 (2017)CrossRefGoogle Scholar
  20. 20.
    M.A. Olgar, M. Tomakin, T. Kucukomeroglu, E. Bacaksiz, Mater. Res. Express (2019).  https://doi.org/10.1088/2053-1591/aaff78 Google Scholar
  21. 21.
    M. Olgar, Superlattice Microst. 126, 32 (2019)CrossRefGoogle Scholar
  22. 22.
    S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Adv. Mater. 25, 1522 (2013).  https://doi.org/10.1002/adma.201203146 CrossRefGoogle Scholar
  23. 23.
    K.V. Gurav, S.W. Shin, U.M. Patil et al., J. Alloy. Compd. 631, 178 (2015).  https://doi.org/10.1016/j.jallcom.2014.12.253 CrossRefGoogle Scholar
  24. 24.
    O. Vigil-Galan, M. Espindola-Rodriguez, M. Courel et al., Sol. Energy Mater. Sol. Cells 117, 246 (2013).  https://doi.org/10.1016/j.solmat.2013.06.008 CrossRefGoogle Scholar
  25. 25.
    P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, J. Alloy. Compd. 509, 7600 (2011).  https://doi.org/10.1016/j.jallcom.2011.04.097 CrossRefGoogle Scholar
  26. 26.
    D.M. Berg, R. Djemour, L. Gutay et al., Appl. Phys. Lett. 100, 192103 (2012).  https://doi.org/10.1063/1.4712623 CrossRefGoogle Scholar
  27. 27.
    D.M. Berg, M. Arasimowicz, R. Djemour et al., Thin Solid Films 569, 113 (2014).  https://doi.org/10.1016/j.tsf.2014.08.028 CrossRefGoogle Scholar
  28. 28.
    C. Malerba, F. Biccari, C.L.A. Ricardo et al., J. Alloy. Compd. 582, 528 (2014).  https://doi.org/10.1016/j.jallcom.2013.07.199 CrossRefGoogle Scholar
  29. 29.
    M.A. Olgar, J. Klaer, R. Mainz, L. Ozyuzer, T. Unold, Thin Solid Films 628, 1 (2017).  https://doi.org/10.1016/j.tsf.2017.03.008 CrossRefGoogle Scholar
  30. 30.
    S. Levcenko, V. Tezlevan, E. Arushanov, S. Schorr, T. Unold, Phys. Rev. B 86, 045206 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Levcenko, J. Just, A. Redinger et al., Phys. Rev. Appl. 5, 024004 (2016).  https://doi.org/10.1103/physrevapplied.5.024004 CrossRefGoogle Scholar
  32. 32.
    T. Küçükömeroğlu, S. Yılmaz, İ. Polat, E. Bacaksız, J. Mater. Sci.: Mater. Electron. 29, 10054 (2018)Google Scholar
  33. 33.
    A.B. Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş. Altındal, J. Mater. Sci.: Mater. Electron. 29, 159 (2018)Google Scholar
  34. 34.
    M.H. Al-Dharob, H.E. Lapa, A. Kökce, A.F. Özdemir, D.A. Aldemir, Ş. Altındal, Mater. Sci. Semicond. Process. 85, 98 (2018)CrossRefGoogle Scholar
  35. 35.
    N. Baraz, İ. Yücedağ, Y. Azizian-Kalandaragh, Ş. Altındal, J. Mater. Sci. 29, 12735 (2018)Google Scholar
  36. 36.
    A. Kumar, S. Vinayak, R. Singh, Curr. Appl. Phys. 13, 1137 (2013)CrossRefGoogle Scholar
  37. 37.
    M. Mamor, J. Phys.: Condens. Matter 21, 335802 (2009)Google Scholar
  38. 38.
    B. Güzeldir, M. Sağlam, A. Ateş, A. Türüt, J. Alloy. Compd. 627, 200 (2015)CrossRefGoogle Scholar
  39. 39.
    N. Tuğluoğlu, S. Karadeniz, Ş. Altındal, Appl. Surf. Sci. 239, 481 (2005)CrossRefGoogle Scholar
  40. 40.
    S. Cheung, N. Cheung, Appl. Phys. Lett. 49, 85 (1986)CrossRefGoogle Scholar
  41. 41.
    J.H. Werner, H.H. Güttler, J. Appl. Phys. 69, 1522 (1991)CrossRefGoogle Scholar
  42. 42.
    Z.K. Yuan, S. Chen, H. Xiang et al., Adv. Func. Mater. 25, 6733 (2015)CrossRefGoogle Scholar
  43. 43.
    M. Hernández, C. Alonso, A. Martel, E. Casielles, V. Rejón, J. Peña, Phys. Status Solidi 220, 209 (2000)CrossRefGoogle Scholar
  44. 44.
    T. Gokmen, O. Gunawan, T.K. Todorov, D.B. Mitzi, Appl. Phys. Lett. 103, 103506 (2013)CrossRefGoogle Scholar
  45. 45.
    R.T. Tung, Mater. Sci. Eng. 35, 1 (2001)CrossRefGoogle Scholar
  46. 46.
    T. Tunç, Ş. Altindal, İ. Uslu, İ. Dökme, H. Uslu, Mater. Sci. Semicond. Process. 14, 139 (2011)CrossRefGoogle Scholar
  47. 47.
    Ç.Ş. Güçlü, A.F. Özdemir, Ş. Altindal, Appl. Phys. A 122, 1032 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OpticianryNigde Ömer Halisdemir UniversityNigdeTurkey
  2. 2.Nanotechnology Application and Research CenterNigde Omer Halisdemir UniversityNigdeTurkey
  3. 3.Department of PhysicsNigde Omer Halisdemir UniversityNigdeTurkey
  4. 4.Department of Physics, Faculty of SciencesKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations