Advertisement

Cobalt germanide contacts: growth reaction, phase formation models, and electrical properties

  • Mohamed A. RabieEmail author
  • Souzan Mirza
  • Yujie Hu
  • Yaser M. Haddara
Review
  • 28 Downloads

Abstract

State of the art of cobalt germanide contacts to semiconductor devices is reviewed in this article. First, evolution of contacts is covered from the dawn of the transistor to present day. The history of contact has three stages: (a) elemental metals as direct contacts to the semiconductor with focus on aluminum, (b) self-aligned silicide contacts, and, recently, (c) the paradigm shift that emphasizes the interface contact resistivity. The second section outlines the current role of germanium in the semiconductor industry and the reasons cobalt germanide is an ideal contact material to germanium and silicon germanium semiconductor devices. Fundamental physical properties of cobalt germanides are presented next. Models for phase formation sequence are, then, detailed. This is followed by a comprehensive survey of the experimental results of formation of cobalt germanides. Those results are discussed and reconciled. Factors affecting the resulting phases and their quality are identified and some optimum choices for the experimental parameters are pointed based on the survey. After that, electrical properties of the contact are discussed. The role of germanium crystal orientation in ohmic and Schottky properties of the contact is analyzed. Fermi level pinning (FLP) plays a role mainly on metal/(100) n-type Ge interfaces. The role of FLP is minimal on p-type Ge and other crystalline orientations. Schottky barrier heights (SBH’s) for cobalt and cobalt germanide contacts reported in the literature are surveyed. Mechanisms of FLP and methods adopted by the industry to depin the fermi level at the interface are outlined. The electrical properties section is concluded with a subsection that focuses on the effect of the crystallinity of the contact material on its electrical behavior. Crystalline cobalt germanides are expected to have lower interface resistivities compared to those calculated based on the SBH survey. The role of heat during Co deposition to obtain epitaxial germanides is pointed. Finally, current challenges and future trends of cobalt germanide contacts are summarized.

Notes

References

  1. 1.
    J.D. Plummer, M. Deal, P.D. Griffin, Silicon VLSI Technology: Fundamentals, Practice, and Modeling, Chapter 11, (Prentice Hall, Inc., Upper Saddle River, 2000), pp. 681–786Google Scholar
  2. 2.
  3. 3.
    Hall, R. N. US2717343A. United States (1955). https://patents.google.com/patent/US2717343A/en?oq=US2717343A
  4. 4.
    W. Workman, Microelectron. Rel. 7(3), 257–265 (1968)CrossRefGoogle Scholar
  5. 5.
    H. Sello, I.A. Blech, E.H. Snow, J.E. Lawrence, D.L. Duncan, A Study of Failure Mechanisms in Silicon Planar Epitaxial Transistors, https://apps.dtic.mil/docs/citations/AD0800048. Accessed Aug 1966
  6. 6.
    J. McCarthy, Microelectron. Rel. 9(2), 187–188 (1970)CrossRefGoogle Scholar
  7. 7.
    K. Chino, Solid-State Electron. 16(1), 119–121 (1973)CrossRefGoogle Scholar
  8. 8.
    E.H. Rhoderick, IEE Proc. I—Solid-State Electron Devices 129(1), 1 (1982)CrossRefGoogle Scholar
  9. 9.
    J. Basterfield, J.M. Shannon, A. Gill, Solid-State Electron. 18(3), 290 (1975)CrossRefGoogle Scholar
  10. 10.
    M.-A. Nicolet, Thin Solid Films 52(3), 415–443 (1978)CrossRefGoogle Scholar
  11. 11.
    J.A. Kittl, K. Opsomer, C. Torregiani, C. Demeurisse, S. Mertens, D.P. Brunco, M.J.H. Van Dal, A. Lauwers, Mater. Sci. Eng. B 154–155, 144–154 (2008)CrossRefGoogle Scholar
  12. 12.
    D. Kahng, M.P. Lepselter, Bell Syst. Tech. J. 44(7), 1525–1528 (1965)CrossRefGoogle Scholar
  13. 13.
    H. Hosack, Appl. Phys. Lett. 21(6), 256–257 (1972)CrossRefGoogle Scholar
  14. 14.
    J. Epstein, US3664874A, United States (1972). https://patents.google.com/patent/US3664874/en
  15. 15.
    Y. Shioya, K. Ikegami, M. Maeda, K. Yanagida, J. Appl. Phys. 61(2), 561–566 (1987)CrossRefGoogle Scholar
  16. 16.
    L.D. Locker, C.D. Capio, J. Appl. Phys. 44(10), 4366–4369 (1973)CrossRefGoogle Scholar
  17. 17.
    C.K. Lau, Y.C. See, D.B. Scott, J.M. Bridges, S.M. Perna, R.D. Davies, in 1982 Int. Electron Devices Meeting (IEDM) (1982), pp. 714–717Google Scholar
  18. 18.
    C. Lavoie, P. Adusumilli, A.V. Carr, J.S.J. Sweet, A.S. Ozcan, E. Levrau, N. Breil, E. Alptekin, ECS Trans. 77(5), 59–79 (2017)CrossRefGoogle Scholar
  19. 19.
    J.B. Lasky, J.S. Nakos, O.J. Cain, P.J. Geiss, IEEE Trans. Electron Devices 38(2), 262–269 (1991)CrossRefGoogle Scholar
  20. 20.
    J.A. Kittl, D.A. Prinslow, P.P. Apte, M.F. Pas, Appl. Phys. Lett. 67(16), 2308–2310 (1995)CrossRefGoogle Scholar
  21. 21.
    R.W. Mann, L.A. Clevenger, J. Electrochem. Soc. 141(5), 1347–1350 (1994)CrossRefGoogle Scholar
  22. 22.
    C.Y. Ting, F.M. d’Heurle, S.S. Iyer, P.M. Fryer, J. Electrochem. Soc. 133(12), 2621–2625 (1986)CrossRefGoogle Scholar
  23. 23.
    R.W. Mann, G.L. Miles, T.A. Knotts, D.W. Rakowski, L.A. Clevenger, J.M.E. Harper, F.M. D’Heurle, C. Cabral, Appl. Phys. Lett. 67(25), 3729–3731 (1995)CrossRefGoogle Scholar
  24. 24.
    C. Cabral, L.A. Clevenger, J.M.E. Harper, F.M. d’Heurle, R.A. Roy, C. Lavoie, K.L. Saenger, G.L. Miles, R.W. Mann, J.S. Nakos, Appl. Phys. Lett. 71(24), 3531–3533 (1997)CrossRefGoogle Scholar
  25. 25.
    Y.F. Hsieh, L.J. Chen, E.D. Marshall, S.S. Lau, Appl. Phys. Lett. 51(20), 1588–1590 (1987)CrossRefGoogle Scholar
  26. 26.
    M. Niazmand, D. Friedrich, W. Windbracke, Microelectron. Eng. 21(1), 427–430 (1993)CrossRefGoogle Scholar
  27. 27.
    T. Yamazaki, K. Goto, T. Fukano, Y. Nara, T. Sugii, T. Ito, in Proceedings of IEEE Int. Electron Devices Meeting (IEDM) (1993) pp. 906–908Google Scholar
  28. 28.
    K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, Y. Tada, T. Nakamura, T. Yamazaki, T. Sugii, IEEE Trans. Electron Devices 46(1), 117–124 (1999)CrossRefGoogle Scholar
  29. 29.
    J.P. Lu, D. Miles, J. Zhao, A. Gurba, Y. Xu, C. Lin, M. Hewson, J. Ruan, L. Tsung, R. Kuan, T. Grider, D. Mercer, C. Montgomery, in Digest. Int. Electron Devices Meeting (IEDM) (2002), pp. 371–374Google Scholar
  30. 30.
    C. Lavoie, F.M. d’Heurle, C. Detavernier, C. Cabral, Microelectron. Eng. 70(2), 144–157 (2003)CrossRefGoogle Scholar
  31. 31.
    C. Detavernier, R.L. Van Meirhaeghe, F. Cardon, K. Maex, Phys. Rev. B 62(18), 12045–12051 (2000)CrossRefGoogle Scholar
  32. 32.
    C. Lavoie, C. Cabral, F.M. d’Heurle, J.L. Jordan-Sweet, J.M.E. Harper, J. Electron. Mater. 31(6), 597–609 (2002)CrossRefGoogle Scholar
  33. 33.
    Z. Wang, D.B. Aldrich, Y.L. Chen, D.E. Sayers, R.J. Nemanich, Thin Solid Films 270(1), 555–560 (1995)CrossRefGoogle Scholar
  34. 34.
    B.E. Deal, A.S. Grove, J. Appl. Phys. 36(12), 3770–3778 (1965)CrossRefGoogle Scholar
  35. 35.
    S. Thompson, N. Anand, M. Armstrong, C. Auth, B. Arcot, M. Alavi et al., in Digest. Int. Electron Devices Meeting (IEDM) (2002), pp. 61–64Google Scholar
  36. 36.
    J. Strane, D. Brown, C. Lavoie, J. Suenaga, B. Haran, P. Press et al., in 2007 Int. Symp. on VLSI Technol., Syst. Appl. (VLSI-TSA) (2007), pp. 1–2Google Scholar
  37. 37.
    S. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau et al., IEEE Trans. Electron Devices 51(11), 1790–1797 (2004)CrossRefGoogle Scholar
  38. 38.
    H.B. Zhao, K.L. Pey, W.K. Choi, S. Chattopadhyay, E.A. Fitzgerald, D.A. Antoniadis, P.S. Lee, J. Appl. Phys. 92(1), 214–217 (2002)CrossRefGoogle Scholar
  39. 39.
    P. Gas, F.M. Heurle, Diffusion in silicides, in Diffusion in Semiconductors and Non-metallic Solids, vol. 33A, ed. by D.L. Beke (Springer, Berlin, 1998), pp. 1–38CrossRefGoogle Scholar
  40. 40.
    Y. Tian, Y.-L. Jiang, Y. Chen, F. Lu, B.-Z. Li, Semicond. Sci. Technol. 17(1), 83 (2002)CrossRefGoogle Scholar
  41. 41.
    O.D. Patterson, H.H. Kang, J. Strane, C. Lavoie, K. Barth, X. Ouyang, K. Wu, in 33rd Int. Symp. for Testing and Failure Analysis, ISTFA 2007, November 4, 2007–November 8, 2007 (ASM International, 2007), pp. 270–274Google Scholar
  42. 42.
    Z. Zhang, J. Atkin, M. Hopstaken, M. Hatzistergos, P. Ronsheim, E. Liniger, R. Laibowitz, P.M. Solomon, IEEE Trans. Electron Devices 59(8), 2027–2032 (2012)CrossRefGoogle Scholar
  43. 43.
    Z. Zhang, F. Pagette, C. D’Emic, B. Yang, C. Lavoie, Y. Zhu et al., IEEE Electron Device Lett. 31(7), 731–733 (2010)CrossRefGoogle Scholar
  44. 44.
    J.A. Kittl, A. Lauwers, O. Chamirian, M.A. Pawlak, M.V. Dal, A. Akheyar et al., MRS Proceedings 810 (2004)Google Scholar
  45. 45.
    X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski et al., in Int. Electron Devices Meeting 1999. Technical Digest (IEDM) (1999), pp. 67–70Google Scholar
  46. 46.
    C.Y. Chang, Y.K. Fang, S.M. Sze, Solid-State Electron. 14(7), 541–550 (1971)CrossRefGoogle Scholar
  47. 47.
    A.Y.C. Yu, Solid-State Electron. 13(2), 239–247 (1970)CrossRefGoogle Scholar
  48. 48.
    C. Lin, B. Greene, S. Narasimha, J. Cai, A. Bryant, C. Radens et al., in 2014 IEEE Int. Electron Devices Meeting (IEDM) (2014), pp. 3.8.1–3.8.3Google Scholar
  49. 49.
    D. Guo, G. Karve, G. Tsutsui, K. Lim, R. Robison, T. Hook et al., in 2016 IEEE Symp. on VLSI Technol. (2016), p. 14Google Scholar
  50. 50.
    D.K. Schroder, D.L. Meier, IEEE Trans. Electron Devices 31(5), 637–647 (1984)CrossRefGoogle Scholar
  51. 51.
    J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain et al., Nat. Nanotechnol. 5(3), 225–229 (2010)CrossRefGoogle Scholar
  52. 52.
    L. Wang, H. Yu, M. Schaekers, J. Everaert, D. Mocuta, N. Horiguchi, N. Collaert, K.D. Meyer, Y. Jiang, I.E.E.E. Trans, Electron Devices 65(5), 1869–1872 (2018)CrossRefGoogle Scholar
  53. 53.
    Y.R. Yang, N. Breil, C.Y. Yang, J. Hsieh, F. Chiang, B. Colombeau et al., in 2016 IEEE Symp. on VLSI Technol. (2016), pp. 1–2Google Scholar
  54. 54.
    H. Yu, M. Schaekers, T. Schram, W. Aderhold, A.J. Mayur, J. Mitard et al., IEEE Electron Device Lett. 37(4), 482–485 (2016)CrossRefGoogle Scholar
  55. 55.
    H. Yu, M. Schaekers, E. Rosseel, A. Peter, J. Lee, W. Song et al., in 2015 IEEE Int. Electron Devices Meeting (IEDM) (2015) pp. 21.7.1–21.7.4Google Scholar
  56. 56.
    H. Niimi, Z. Liu, O. Gluschenkov, S. Mochizuki, J. Fronheiser, J. Li et al., IEEE Electron Device Lett. 37(11), 1371–1374 (2016)CrossRefGoogle Scholar
  57. 57.
    H. Yu, M. Schaekers, T. Schram, S. Demuynck, N. Horiguchi, K. Barla, N. Collaert, A.V. Thean, K.D. Meyer, IEEE Trans. Electron Devices 63(7), 2671–2676 (2016)CrossRefGoogle Scholar
  58. 58.
    A. Agrawal, J. Lin, M. Barth, R. White, B. Zheng, S. Chopra et al., Appl. Phys. Lett. 104(11), 112101 (2014)CrossRefGoogle Scholar
  59. 59.
    H. Yu, M. Schaekers, J. Zhang, L. Wang, J. Everaet, N. Horiguchi, Y. Jiang, D. Mocuta, N. Collaert, IEEE Trans. Electron Devices 64(2), 500–506 (2017)CrossRefGoogle Scholar
  60. 60.
    M. Tanenbaum, Bell Labs Notebook No. 25505, page 30 (January 26, 1954)Google Scholar
  61. 61.
    K. Schuegraf, M.C. Abraham, A. Brand, M. Naik, R. Thakur, IEEE J. Electron Devices Soc. 1(3), 66–75 (2013)CrossRefGoogle Scholar
  62. 62.
    C. Claeys, E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsevier, Oxford, 2007), pp. 246–261Google Scholar
  63. 63.
    C.O. Chui, K. Gopalakrishnan, P.B. Griffin, J.D. Plummer, K.C. Saraswat, Appl. Phys. Lett. 83(16), 3275–3277 (2003)CrossRefGoogle Scholar
  64. 64.
    K. Kita, K. Kyuno, A. Toriumi, Appl. Phys. Lett. 85(1), 52–54 (2004)CrossRefGoogle Scholar
  65. 65.
    C.O. Chui, L. Kulig, J. Moran, W. Tsai, K.C. Saraswat, Appl. Phys. Lett. 87(9), 091909 (2005)CrossRefGoogle Scholar
  66. 66.
    T. Maeda, K. Ikeda, S. Nakaharai, T. Tezuka, N. Sugiyama, Y. Moriyama, S. Takagi, IEEE Electron Device Lett. 26(2), 102–104 (2005)CrossRefGoogle Scholar
  67. 67.
    S.-L. Zhang, M. Östling, Crit. Rev. Solid State Mater. Sci. 28(1), 1–129 (2003)CrossRefGoogle Scholar
  68. 68.
    S. Gaudet, C. Detavernier, A.J. Kellock, P. Desjardins, C. Lavoie, J. Vac. Sci. Technol. A 24(3), 474–485 (2006)CrossRefGoogle Scholar
  69. 69.
    D.P. Brunco, B.D. Jaeger, G. Eneman, J. Mitard, G. Hellings, A. Satta et al., J. Electrochem. Soc. 155(7), H552–H561 (2008)CrossRefGoogle Scholar
  70. 70.
    D.P. Brunco, K. Opsomer, B.D. Jaeger, G. Winderickx, K. Verheyden, M. Meuris, Electrochem. Solid State Lett. 11(2), H39–H41 (2008)CrossRefGoogle Scholar
  71. 71.
    E. Simoen, K. Opsomer, C. Claeys, K. Maex, C. Detavernier, R.L. Van Meirhaeghe, P. Clauws, Solid State Phenom. 131–133, 47–52 (2008)Google Scholar
  72. 72.
    L. Lajaunie, M.-L. David, K. Opsomer, E. Simoen, C. Claeys, J.F. Barbot, Solid State Phenom. 131–133, 107–112 (2008)Google Scholar
  73. 73.
    A. Chawanda, C. Nyamhere, F.D. Auret, W. Mtangi, M. Diale, J.M. Nel, Phys. Status Solidi C 7(2), 248–251 (2010)CrossRefGoogle Scholar
  74. 74.
    R. Jaafar, Y. Nehme, D. Berling, J.L. Bubendorff, A. Mehdaoui, C. Pirri, G. Garreau, C. Uhlaq-Bouillet, Appl. Phys. Lett. 93(3), 033114 (2008)CrossRefGoogle Scholar
  75. 75.
    R. Jaafar, D. Berling, D. Sébilleau, G. Garreau, Phys. Rev. B 81(15), 155423 (2010)CrossRefGoogle Scholar
  76. 76.
    H. Yoon, A.T. Lee, E.-A. Choi, K. Seo, N. Bagkar, J. Cho, Y. Jo, K.J. Chang, B. Kim, J. Am. Chem. Soc. 132(49), 17447–17451 (2010)CrossRefGoogle Scholar
  77. 77.
    E. Adelson, A.E. Austin, J. Phys. Chem. Solids 26(12), 1795–1804 (1965)CrossRefGoogle Scholar
  78. 78.
    V. Janardhanam, J.-S. Kim, K.-W. Moon, K.-S. Ahn, C.-J. Choi, Microelectron. Eng. 89, 10–14 (2012)CrossRefGoogle Scholar
  79. 79.
    H. Dixit, C. Niu, M. Raymond, V. Kamineni, R.K. Pandey, A. Konar et al., IEEE Trans. Electron Devices 64(9), 3775–3780 (2017)CrossRefGoogle Scholar
  80. 80.
    C. Chou, H. Chang, Y. Wu, IEEE Electron Device Lett. 39(1), 91–94 (2018)CrossRefGoogle Scholar
  81. 81.
    E. Koltin, M. Eizenberg, J. Appl. Phys. 71(9), 4604–4611 (1992)CrossRefGoogle Scholar
  82. 82.
    M. Genut, M. Eizenberg, J. Appl. Phys. 68(5), 2146–2157 (1990)CrossRefGoogle Scholar
  83. 83.
    B.S. Joo, H. Kim, S. Jang, D. Han, M. Han, J. Phys. Chem. Solids 119, 309–313 (2018)CrossRefGoogle Scholar
  84. 84.
    N.A. Stolwijk, L. Lerner, J. Appl. Phys. 110(3), 033526 (2011)CrossRefGoogle Scholar
  85. 85.
    K. Opsomer, E. Simoen, C. Claeys, K. Maex, C. Detavernier, R.L. Van Meirhaeghe, S. Forment, P. Clauws, Mater. Sci. Semicond. Process. 9(4), 554–558 (2006)CrossRefGoogle Scholar
  86. 86.
    E. Simoen, K. Opsomer, C. Claeys, K. Maex, C. Detavernier, R.L. Van Meirhaeghe, S. Forment, P. Clauws, Appl. Phys. Lett. 88(18), 183506 (2006)CrossRefGoogle Scholar
  87. 87.
    E. Simoen, K. Opsomer, C. Claeys, K. Maex, C. Detavernier, R.L. Van Meirhaeghe, P. Clauws, J. Appl. Phys. 104(2), 023705 (2008)CrossRefGoogle Scholar
  88. 88.
    K. Ishida, T. Nishizawa, J. Phase Equilib. 12(1), 77–83 (1991)CrossRefGoogle Scholar
  89. 89.
    M. Hansen, Constitution of Binary Alloys (McGraw-Hill, New York, 1958)CrossRefGoogle Scholar
  90. 90.
    N. Audebrand, M. Ellner, E.J. Mittemeijer, J. Alloy. Compd. 353(1), 228–232 (2003)CrossRefGoogle Scholar
  91. 91.
    S.P. Ashburn, M.C. Öztürk, J.J. Wortman, G. Harris, J. Honeycutt, D.M. Maher, J. Electron. Mater. 21(1), 81–86 (1992)CrossRefGoogle Scholar
  92. 92.
    M.A. Rabie, S. Mirza, V. Jarvis, Y.M. Haddara, J. Appl. Phys. 121(14), 145304 (2017)CrossRefGoogle Scholar
  93. 93.
    S.P. Ashburn, M.C. Öztürk, G. Harris, D.M. Maher, J. Appl. Phys. 74(7), 4455–4460 (1993)CrossRefGoogle Scholar
  94. 94.
    C. Krontiras, S.N. Georga, S. Sakkopoulos, E. Vitoratos, J. Salmi, J. Phys. 2(14), 3323 (1990)Google Scholar
  95. 95.
    K. Park, C.-H. An, M.S. Lee, C.-W. Yang, H.-J. Lee, H. Kim, J. Electrochem. Soc. 156(4), H229–H232 (2009)CrossRefGoogle Scholar
  96. 96.
    R.S. Howell, G. Sarcona, S.K. Saha, M.K. Hatalis, J. Vac. Sci. Technol. A 18(1), 87–93 (2000)CrossRefGoogle Scholar
  97. 97.
    R.T. Tung, J.M. Poate, J.C. Bean, J.M. Gibson, D.C. Jacobson, Thin Solid Films 93(1), 77–90 (1982)CrossRefGoogle Scholar
  98. 98.
    R. Pretorius, T.K. Marais, C.C. Theron, Mater. Sci. Eng. Rep. 10(1), 1–83 (1993)Google Scholar
  99. 99.
    R.M. Walser, R.W. Bené, Appl. Phys. Lett. 28(10), 624–625 (1976)CrossRefGoogle Scholar
  100. 100.
    L.J. Chen, Silicide Technology for Integrated Circuits (Institution of Electrical Engineers, 2004), p. 22Google Scholar
  101. 101.
    R.W. Bené, Appl. Phys. Lett. 41(6), 529–531 (1982)CrossRefGoogle Scholar
  102. 102.
    M. Wittmer, M.-A. Nicolet, J.W. Mayer, Thin Solid Films 42(1), 51–59 (1977)CrossRefGoogle Scholar
  103. 103.
    M.A. Rabie, I. Aden-Ali, Y.M. Haddara, in 2017 Int. Conf. on Simul. of Semicond. Processes and Devices (SISPAD) (2017), pp. 69–72Google Scholar
  104. 104.
    S. Dhar, V.N. Kulkarni, Thin Solid Films 333(1), 20–24 (1998)CrossRefGoogle Scholar
  105. 105.
    A. Tsuruta, W.G. Chu, K. Tamura, H. Ishii, M. Owari, Y. Nihei, Surf. Interface Anal. 37(2), 230–234 (2005)CrossRefGoogle Scholar
  106. 106.
    G.A. Smith, L. Luo, S. Hashimoto, W.M. Gibson, N. Lewis, J. Vac. Sci. Technol. A 7(3), 1475–1478 (1989)CrossRefGoogle Scholar
  107. 107.
    J. Shi, D. Ishii, M. Hashimoto, A. Barna, P.B. Barna, Y. Haga, O. Nittono, J. Cryst. Growth 222(1), 235–242 (2001)CrossRefGoogle Scholar
  108. 108.
    J. Choi, D.K. Lim, Y. Kim, S. Kim, J. Phys. Chem. C 114(19), 8992–8996 (2010)CrossRefGoogle Scholar
  109. 109.
    A. Vantomme, S. Degroote, J. Dekoster, G. Langouche, R. Pretorius, Appl. Phys. Lett. 74(21), 3137–3139 (1999)CrossRefGoogle Scholar
  110. 110.
    H.P. Sun, Y.B. Chen, X.Q. Pan, D.Z. Chi, R. Nath, Y.L. Foo, Appl. Phys. Lett. 86(7), 071904 (2005)CrossRefGoogle Scholar
  111. 111.
    I. Goldfarb, G.A.D. Briggs, J. Vac. Sci. Technol. B 20(4), 1419–1426 (2002)CrossRefGoogle Scholar
  112. 112.
    M. Ewert, T. Schmidt, J.I. Flege, I. Heidmann, T. Grzela, W.M. Klesse et al., Nanotechnology 27(32), 325705 (2016)CrossRefGoogle Scholar
  113. 113.
    A.P. Peter, K. Opsomer, C. Adelmann, A. van Ammel, J. Meersschaut, A. Moussa et al., J. Mater. Chem. C 2(10), 1904–1912 (2014)CrossRefGoogle Scholar
  114. 114.
    K. Prabhakaran, T. Ogino, Appl. Surf. Sci. 100–101, 518–521 (1996)CrossRefGoogle Scholar
  115. 115.
    T. Grzela, W. Koczorowski, G. Capellini, R. Czajka, M.W. Radny, N. Curson, S.R. Schofield, M.A. Schubert, T. Schroeder, J. Appl. Phys. 115(7), 074307 (2014)CrossRefGoogle Scholar
  116. 116.
    H.P. Sun, Y.B. Chen, X.Q. Pan, D.Z. Chi, R. Nath, Y.L. Foo, Appl. Phys. Lett. 87(21), 211909 (2005)CrossRefGoogle Scholar
  117. 117.
    K. Opsomer, D. Deduytsche, C. Detavernier, R.L. Van Meirhaeghe, A. Lauwers, K. Maex, C. Lavoie, Appl. Phys. Lett. 90(3), 031906 (2007)CrossRefGoogle Scholar
  118. 118.
    A. Chawanda, C. Nyamhere, F.D. Auret, W. Mtangi, T.T. Hlatshwayo, M. Diale, J.M. Nel, Physica B 404(22), 4482–4484 (2009)CrossRefGoogle Scholar
  119. 119.
    L. Lajaunie, M.L. David, F. Pailloux, C. Tromas, E. Simoen, C. Claeys, J.F. Barbot, Mater. Sci. Semicond. Process. 11(5), 300–304 (2008)CrossRefGoogle Scholar
  120. 120.
    L. Lajaunie, M.L. David, J.F. Barbot, J. Phys. D 44(12), 125103 (2011)CrossRefGoogle Scholar
  121. 121.
    K.D. Keyser, R.L.V. Meirhaeghe, C. Detavernier, J. Jordan-Sweet, C. Lavoie, J. Electrochem. Soc. 157(4), H395–H404 (2010)CrossRefGoogle Scholar
  122. 122.
    Y. Hoshi, K. Sawano, K. Hamaya, M. Miyao, Y. Shiraki, Appl. Phys. Express 5(1), 015701 (2011)CrossRefGoogle Scholar
  123. 123.
    S. Cea, Multidimensional viscoelastic modeling of silicon oxidation and titanium silicidation, Ph.D. Thesis, University of Florida, 1996Google Scholar
  124. 124.
    R.R. Lieten, S. Degroote, M. Kuijk, G. Borghs, Appl. Phys. Lett. 92(2), 022106 (2008)CrossRefGoogle Scholar
  125. 125.
    S.-D. Kim, C.-M. Park, J.C.S. Woo, IEEE Trans. Electron Devices 49(3), 467–472 (2002)CrossRefGoogle Scholar
  126. 126.
    K. Saraswat, Shallow Junctions & Contacts, (Stanford, 2018). http://web.stanford.edu/class/ee311/NOTES/Shallow%20Junctions%20Slides.pdf. Accessed 18 Dec 2018
  127. 127.
    K. Kasahara, S. Yamada, K. Sawano, M. Miyao, K. Hamaya, Phys. Rev. B 84(20), 205301 (2011)CrossRefGoogle Scholar
  128. 128.
    A. Dimoulas, P. Tsipas, A. Sotiropoulos, E.K. Evangelou, Appl. Phys. Lett. 89(25), 252110 (2006)CrossRefGoogle Scholar
  129. 129.
    T. Nishimura, K. Kita, A. Toriumi, Appl. Phys. Lett. 91(12), 123123 (2007)CrossRefGoogle Scholar
  130. 130.
    Y. Zhou, M. Ogawa, X. Han, K.L. Wang, Appl. Phys. Lett. 93(20), 202105 (2008)CrossRefGoogle Scholar
  131. 131.
    D. Han, Y. Wang, D. Tian, W. Wang, X. Liu, J. Kang, R. Han, Microelectron. Eng. 82(2), 93–98 (2005)CrossRefGoogle Scholar
  132. 132.
    A. Chawanda, C. Nyamhere, F.D. Auret, W. Mtangi, M. Diale, J.M. Nel, J. Alloys Compd. 492(1), 649–655 (2010)CrossRefGoogle Scholar
  133. 133.
    H.B. Yao, D.Z. Chi, R. Li, S.J. Lee, D.-L. Kwong, Appl. Phys. Lett. 89(24), 242117 (2006)CrossRefGoogle Scholar
  134. 134.
    A. Thanailakis, D.C. Northrop, Solid-State Electron. 16(12), 1383–1389 (1973)CrossRefGoogle Scholar
  135. 135.
    K. Yamane, K. Hamaya, Y. Ando, Y. Enomoto, K. Yamamoto, T. Sadoh, M. Miyao, Appl. Phys. Lett. 96(16), 162104 (2010)CrossRefGoogle Scholar
  136. 136.
    E. Guo, Z. Zeng, Y. Zhang, X. Long, H. Zhou, X. Wang, Microelectron. Rel. 62, 63–69 (2016)CrossRefGoogle Scholar
  137. 137.
    S. Sun, Y. Sun, Z. Liu, D.-I. Lee, S. Peterson, P. Pianetta, Appl. Phys. Lett. 88(2), 021903 (2006)CrossRefGoogle Scholar
  138. 138.
    K. Prabhakaran, F. Maeda, Y. Watanabe, T. Ogino, Appl. Phys. Lett. 76(16), 2244–2246 (2000)CrossRefGoogle Scholar
  139. 139.
    J. Lauwaert, J. Van Gheluwe, J. Vanhellemont, E. Simoen, P. Clauws, J. Appl. Phys. 105(7), 073707 (2009)CrossRefGoogle Scholar
  140. 140.
    F.D. Auret, W.E. Meyer, S. Coelho, M. Hayes, Appl. Phys. Lett. 88(24), 242110 (2006)CrossRefGoogle Scholar
  141. 141.
    E. Simoen, C. Claeys, S. Sioncke, J. Van Steenbergen, M. Meuris, S. Forment, J. Vanhellemont, P. Clauws, A. Theuwis, J. Mater. Sci. 18(7), 799–804 (2007)Google Scholar
  142. 142.
    E. Gaubas, J. Vanhellemont, E. Simoen, A. Theuwis, P. Clauws, MRS Proceedings 994 (2007)Google Scholar
  143. 143.
    C.S. Wu, D.M. Scott, W. Chen, S.S. Lau, J. Electrochem. Soc. 132(4), 918–922 (1985)CrossRefGoogle Scholar
  144. 144.
    M. Kuzmin, P. Laukkanen, J. Makela, M. Tuominen, M. Yasir, J. Dahl, M.P.J. Punkkinen, K. Kokko, Phys. Rev. B 94(3), 035421 (2016)CrossRefGoogle Scholar
  145. 145.
    P. Tsipas, A. Dimoulas, Appl. Phys. Lett. 94(1), 012114 (2009)CrossRefGoogle Scholar
  146. 146.
    K. Kasahara, S. Yamada, T. Sakurai, K. Sawano, H. Nohira, M. Miyao, K. Hamaya, Appl. Phys. Lett. 104(17), 172109 (2014)CrossRefGoogle Scholar
  147. 147.
    J.R. Weber, A. Janotti, P. Rinke, C.G. Van de Walle, Appl. Phys. Lett. 91(14), 142101 (2007)CrossRefGoogle Scholar
  148. 148.
    A. Stesmans, Appl. Phys. Lett. 68(15), 2076–2078 (1996)CrossRefGoogle Scholar
  149. 149.
    V.V. Afanas’ev, Y.G. Fedorenko, A. Stesmans, Appl. Phys. Lett. 87(3), 032107 (2005)CrossRefGoogle Scholar
  150. 150.
    P. Broqvist, A. Alkauskas, A. Pasquarello, Phys. Rev. B 78(7), 075203 (2008)CrossRefGoogle Scholar
  151. 151.
    M. Houssa, G. Pourtois, M. Caymax, M. Meuris, M.M. Heyns, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 93(16), 161909 (2008)CrossRefGoogle Scholar
  152. 152.
    S. Baldovino, A. Molle, M. Fanciulli, Appl. Phys. Lett. 96(22), 222110 (2010)CrossRefGoogle Scholar
  153. 153.
    S. Paleari, S. Baldovino, A. Molle, M. Fanciulli, Phys. Rev. Lett. 110(20), 206101 (2013)CrossRefGoogle Scholar
  154. 154.
    Y.-C. Yeo, T.-J. King, C. Hu, J. Appl. Phys. 92(12), 7266–7271 (2002)CrossRefGoogle Scholar
  155. 155.
    S.G. Louie, M.L. Cohen, Phys. Rev. B 13(6), 2461–2469 (1976)CrossRefGoogle Scholar
  156. 156.
    D.A. Muller, D.A. Shashkov, R. Benedek, L.H. Yang, J. Silcox, D.N. Seidman, Phys. Rev. Lett. 80(21), 4741–4744 (1998)CrossRefGoogle Scholar
  157. 157.
    R.L. Thornton, Electron. Lett. 17(14), 485–486 (1981)CrossRefGoogle Scholar
  158. 158.
    V. Kamineni, A. Carr, C. Niu, P. Adusumilli, T. Abrams, R. Xiel et al., in 2018 IEEE Int. Interconnect Technol. Conf. (IITC) (2018), pp. 28–29Google Scholar
  159. 159.
    Z. Li, The Source/Drain Engineering of Nanoscale Germanium-Based MOS Device, Chapter 2 (Springer, 2016) pp. 11–26.Google Scholar
  160. 160.
    M. Mueller, Q.T. Zhao, C. Urban, C. Sandow, D. Buca, S. Lenk, S. Estevez, S. Mantl, Mater. Sci. Eng. B 154–155, 168–171 (2008)CrossRefGoogle Scholar
  161. 161.
    H.G. Grimmeiss, L. Montelius, K. Larsson, Phys. Rev. B 37(12), 6916–6928 (1988)CrossRefGoogle Scholar
  162. 162.
    Y. Tong, B. Liu, P.S.Y. Lim, Y. Yeo, IEEE Electron Device Lett. 33(6), 773–775 (2012)CrossRefGoogle Scholar
  163. 163.
    K. Ikeda, Y. Yamashita, N. Sugiyama, N. Taoka, S. Takagi, Appl. Phys. Lett. 88(15), 152115 (2006)CrossRefGoogle Scholar
  164. 164.
    A.V. Thathachary, K.N. Bhat, N. Bhat, M.S. Hegde, Appl. Phys. Lett. 96(15), 152108 (2010)CrossRefGoogle Scholar
  165. 165.
    M. Kobayashi, A. Kinoshita, K. Saraswat, H.-P. Wong, Y. Nishi, in 2008 Symp. on VLSI Tech. (2008) pp. 54–55Google Scholar
  166. 166.
    D. Connelly, C. Faulkner, D.E. Grupp, J.S. Harris, IEEE Trans. Nanotechnol. 3(1), 98–104 (2004)CrossRefGoogle Scholar
  167. 167.
    G.-S. Kim, S.-W. Kim, S.-H. Kim, J. Park, Y. Seo, B.J. Cho, C. Shin, J.H. Shim, H.-Y. Yu, ACS Appl. Mater. Interfaces 8(51), 35419–35425 (2016)CrossRefGoogle Scholar
  168. 168.
    Z. Li, X. An, Q. Yun, M. Lin, X. Zhang, R. Huang, ECS Solid State Lett. 1(4), Q33–Q34 (2012)CrossRefGoogle Scholar
  169. 169.
    Y. Zhou, W. Han, Y. Wang, F. Xiu, J. Zou, R.K. Kawakami, K.L. Wang, Appl. Phys. Lett. 96(10), 102103 (2010)CrossRefGoogle Scholar
  170. 170.
    M. Kobayashi, A. Kinoshita, K. Saraswat, H.-S.P. Wong, Y. Nishi, J. Appl. Phys. 105(2), 023702 (2009)CrossRefGoogle Scholar
  171. 171.
    H.D. Wu, C. Wang, J.B. Wei, W. Huang, C. Li, H.K. Lai, J. Li, C. Liu, S.Y. Chen, IEEE Electron Device Lett. 35(12), 1188–1190 (2014)CrossRefGoogle Scholar
  172. 172.
    P. Ranade, Y.-K. Choi, D. Ha, A. Agarwal, M. Ameen, T.-J. King, in Digest. Int. Electron Devices Meeting (IEDM) (2002), pp. 363–366Google Scholar
  173. 173.
    R. Smoluchowski, Phys. Rev. 60(9), 661–674 (1941)CrossRefGoogle Scholar
  174. 174.
    C.R. Wronski, D.E. Carlson, R.E. Daniel, Appl. Phys. Lett. 29(9), 602–605 (1976)CrossRefGoogle Scholar
  175. 175.
    K.E. Mello, S.P. Murarka, T.-M. Lu, S.L. Lee, J. Appl. Phys. 81(11), 7261–7267 (1997)CrossRefGoogle Scholar
  176. 176.
    S.M. Sze, K.K. Ng, Physics of semiconductor devices, 3rd edn. (Wiley, New York, 2007), p. 353Google Scholar
  177. 177.
    J.D. Blauwe, IEEE Trans. Nanotechnol. 99(1), 72–77 (2002)CrossRefGoogle Scholar
  178. 178.
    I. Goldfarb, G.A.D. Briggs, J. Mater. Res. 16(3), 744–752 (2001)CrossRefGoogle Scholar
  179. 179.
    K. Kanematsu, K. Yasukōchi, T. Ohoyama, J. Phys. Soc. Jpn. 18(10), 1429–1436 (1963)CrossRefGoogle Scholar
  180. 180.
    A. Dayer, P. Feschotte, J. Less-Common Met. 72(1), 51–70 (1980)CrossRefGoogle Scholar
  181. 181.
    T.H. Phung, R. Xie, S. Tripathy, M. Yu, C. Zhu, J. Electrochem. Soc. 157(2), H208–H213 (2010)CrossRefGoogle Scholar
  182. 182.
    R.F. Pierret, Semiconductor Device Fundamentals (Addison-Wesley Publishing Company Inc, New York, 1996), pp. 477–500Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GLOBALFOUNDRIES, Inc.MaltaUSA
  2. 2.Institute of Biomaterials & Biomedical EngineeringUniversity of TorontoTorontoCanada
  3. 3.Department of Electrical and Computer EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations