Advertisement

Facile synthesis of N-doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor

  • Jiqiu Qi
  • Dongren Chen
  • Wei Wang
  • Yanwei Sui
  • Yezeng He
  • Qingkun Meng
  • Fuxiang Wei
  • Yaojian RenEmail author
  • Jinlong LiuEmail author
  • Yunxue Jin
Article
  • 24 Downloads

Abstract

Nitrogen-doped activated carbon (NAC) with a high specific surface area was successfully fabricated through graphitization derived from cotton and ammonia doping. The obtained NAC exhibits an enhanced specific capacitance of 156.4 F g−1 at 0.5 A g−1 and good cycling stability with capacitance retention of 95% after 5000 cycles. Hydrothermal route was used to synthesize CuCo2O4 nanoneedles with diameter of 20 to 50 nm. CuCo2O4 electrode showed good electrochemical performance with specific capacitance of 390 F g−1 at 0.5 A g−1 and high stability. Based on the two electrodes, an all-solid-state asymmetric supercapacitor (ASC) was assembled, which can achieve specific capacitance of 26.2 F g−1 at 1 A g−1, energy density of 8.2 Wh kg−1 at a power density of 750 W kg−1 and still retains 5.6 Wh kg−1 at power density of 7500 W kg−1. Two ASCs in series successfully illuminated 52 LEDs connected in parallel, indicating the practical application of the device.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51601220 and 51671214), the Science and Technology Planning Project of Jiangsu Province (No. BY2016026-05) and the Laboratory Open Fund (II and III Project) of China University of Mining and Technology (No. 20180212).

References

  1. 1.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  2. 2.
    J.R. Miller, P. Simon, Materials science—electrochemical capacitors for energy management. Science 321, 651–652 (2008)CrossRefGoogle Scholar
  3. 3.
    B.H. Qu, L.L. Hu, Q.H. Li, Y.G. Wang, L.B. Chen, T.H. Wang, High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. ACS Appl. Mater. Interfaces 6, 731–736 (2014)CrossRefGoogle Scholar
  4. 4.
    J.Q. Qi, Y. Chang, Y.W. Sui, Y.Z. He, Q.K. Meng, F.X. Wei, Y.J. Ren, Y.X. Jin, Facile synthesis of Ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor. Adv. Mater. Interfaces 5, 1700985 (2018)CrossRefGoogle Scholar
  5. 5.
    R. Wang, Y.W. Sui, S.F. Huang, Y.G. Pu, P. Cao, High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem. Eng. J. 331, 527–535 (2018)CrossRefGoogle Scholar
  6. 6.
    Y. Chang, Y.W. Sui, J.Q. Qi, L.Y. Jiang, Y.Z. He, F.X. Wei, Q.K. Meng, Y.X. Jin, Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochim. Acta 226, 69–78 (2017)CrossRefGoogle Scholar
  7. 7.
    S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, J.C. Gao, C.M. Li, Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater. 8, 1702545 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 5, 2188–2196 (2013)CrossRefGoogle Scholar
  9. 9.
    V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)CrossRefGoogle Scholar
  10. 10.
    D.Z. Zhu, Y.W. Wang, L.H. Gan, M.X. Liu, K. Cheng, Y.H. Zhao, X.X. Deng, D.M. Sun, Nitrogen-containing carbon microspheres for supercapacitor electrodes. Electrochim. Acta 158, 166–174 (2015)CrossRefGoogle Scholar
  11. 11.
    K. Jayaramulu, D.P. Dubal, B. Nagar, V. Ranc, O. Tomanec, M. Petr, K.K.R. Datta, R. Zboril, P. Gomez-Romero, R.A. Fischer, Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv. Mater. 30, 1705789 (2018)CrossRefGoogle Scholar
  12. 12.
    J.G. Wang, H.Z. Liu, H.H. Sun, W. Hua, H.W. Wang, X.R. Liu, B.Q. Wei, One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85–92 (2018)CrossRefGoogle Scholar
  13. 13.
    W. Yang, W. Yang, L.N. Kong, A.L. Song, X.J. Qin, G.J. Shao, Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon 127, 557–567 (2018)CrossRefGoogle Scholar
  14. 14.
    J.Q. Qi, Y. Chang, Y.W. Sui, Y.Z. He, Q.K. Meng, F.X. Wei, Y.L. Zhao, Y.X. Jin, Facile construction of 3D reduced graphene oxide wrapped Ni3S2 nanoparticles on Ni foam for high-performance asymmetric supercapacitor electrodes. Part Part Syst Char 34, 1700196 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Ding, H.L. Wang, Z. Li, K. Cui, D. Karpuzov, X.H. Tan, A. Kohandehghan, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941–955 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.J. Li, G.L. Wang, T. Wei, Z.J. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)CrossRefGoogle Scholar
  17. 17.
    E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, D. Mitlin, High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8, 7115–7129 (2014)CrossRefGoogle Scholar
  18. 18.
    Y.X. Huang, Y. Liu, G.J. Zhao, J.Y. Chen, Sustainable activated carbon fiber from sawdust by reactivation for high-performance supercapacitors. J. Mater. Sci. 52, 478–488 (2017)CrossRefGoogle Scholar
  19. 19.
    C. Ma, J.N. Chen, Q.C. Fan, J.C. Guo, W.N. Liu, E.C. Cao, J.L. Shi, Y. Song, Preparation and one-step activation of nanoporous ultrafine carbon fibers derived from polyacrylonitrile/cellulose blend for used as supercapacitor electrode. J. Mater. Sci. 53, 4527–4539 (2018)CrossRefGoogle Scholar
  20. 20.
    C.J. Yuan, H.B. Lin, H.Y. Lu, E.D. Xing, Y.S. Zhang, B.Y. Xie, Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors. Appl. Energy 178, 260–268 (2016)CrossRefGoogle Scholar
  21. 21.
    W. Wang, L.J. Chen, J.Q. Qi, Y.W. Sui, Y.Z. He, Q.K. Meng, F.X. Wei, Z. Sun, All-solid-state asymmetric supercapacitor based on N-doped activated carbon derived from polyvinylidene fluoride and ZnCo2O4 nanosheet arrays. J. Mater. Sci. Mater Electron. 29, 2120–2130 (2018)CrossRefGoogle Scholar
  22. 22.
    M. Zhou, F. Pu, Z. Wang, S.Y. Guan, Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68, 185–194 (2014)CrossRefGoogle Scholar
  23. 23.
    L.F. Chen, Z.H. Huang, H.W. Liang, H.L. Gao, S.H. Yu, Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Funct. Mater. 24, 5104–5111 (2014)CrossRefGoogle Scholar
  24. 24.
    Y.C. Yao, P. Liu, X.Y. Li, S.Z. Zeng, T.B. Lan, H.T. Huang, X.R. Zeng, J.Z. Zou, Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained via bimetallic-coordination organic framework modification and their application in supercapacitors. Dalton Trans. 47, 7316–7326 (2018)CrossRefGoogle Scholar
  25. 25.
    D. Zeng, Y.P. Dou, M. Li, M. Zhou, H.M. Li, K. Jiang, F. Yang, J.J. Peng, Wool fiber-derived nitrogen-doped porous carbon prepared from molten salt carbonization method for supercapacitor application. J. Mater. Sci. 53, 8372–8384 (2018)CrossRefGoogle Scholar
  26. 26.
    K.X. Zou, Y.F. Deng, J.P. Chen, Y.Q. Qian, Y.W. Yang, Y.W. Li, G.H. Chen, Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. J. Power Sources 378, 579–588 (2018)CrossRefGoogle Scholar
  27. 27.
    B.J. Jiang, C.G. Tian, L. Wang, L. Sun, C. Chen, X.Z. Nong, Y.J. Qiao, H.G. Fu, Highly concentrated, stable nitrogen-doped graphene for supercapacitors: simultaneous doping and reduction. Appl. Surf. Sci. 258, 3438–3443 (2012)CrossRefGoogle Scholar
  28. 28.
    X.Q. Fan, L.X. Zhang, G.B. Zhang, Z. Shu, J.L. Shi, Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture. Carbon 61, 423–430 (2013)CrossRefGoogle Scholar
  29. 29.
    J.H. Hou, C.B. Cao, F. Idrees, X.L. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556–2564 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Liu, K.S. Hui, K.N. Hui, Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose sensors. ACS Appl. Mater. Interfaces 8, 3258–3267 (2016)CrossRefGoogle Scholar
  31. 31.
    S.D. Liu, D.X. Ni, H.F. Li, K.N. Hui, C.Y. Ouyang, S.C. Jun, Effect of cation substitution on the pseudocapacitive performance of spinel cobaltite MCo2O4 (M = Mn, Ni, Cu, and Co)dagger. J. Mater. Chem. A 6, 10674–10685 (2018)CrossRefGoogle Scholar
  32. 32.
    S. Liu, K.S. Hui, K.N. Hui, J.M. Yun, K.H. Kim, Vertically stacked bilayer CuCo2O4/MnCO2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. J. Mater. Chem. A 4, 8061–8071 (2016)CrossRefGoogle Scholar
  33. 33.
    M.B. Vazquez-Santos, E. Geissler, K. Laszlo, J.N. Rouzaud, A. Martinez-Alonso, J.M.D. Tascon, Comparative XRD, Raman, and TEM study on graphitization of PBO-derived carbon fibers. J. Phys. Chem. C 116, 257–268 (2012)CrossRefGoogle Scholar
  34. 34.
    L. Sun, C.G. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang, H.G. Fu, Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem. Eur. J. 20, 564–574 (2014)CrossRefGoogle Scholar
  35. 35.
    T.C. Nagaiah, A. Bordoloi, M.D. Sanchez, M. Muhler, W. Schuhmann, Mesoporous nitrogen-rich carbon materials as catalysts for the oxygen reduction reaction in alkaline solution. ChemSusChem 5, 637–641 (2012)CrossRefGoogle Scholar
  36. 36.
    K.M. Horax, S.J. Bao, M.Q. Wang, Y.A. Li, Analysis of graphene-like activated carbon derived from rice straw for application in supercapacitor. Chin. Chem. Lett. 28, 2290–2294 (2017)CrossRefGoogle Scholar
  37. 37.
    L. Hao, X.L. Li, L.J. Zhi, Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25, 3899–3904 (2013)CrossRefGoogle Scholar
  38. 38.
    Y.F. Zhao, W. Ran, J. He, Y.F. Song, C.M. Zhang, D.B. Xiong, F.M. Gao, J.S. Wu, Y.Y. Xia, Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Appl. Mater. Interfaces 7, 1132–1139 (2015)CrossRefGoogle Scholar
  39. 39.
    J.W. Xiao, L. Wan, S.H. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 14, 831–838 (2014)CrossRefGoogle Scholar
  40. 40.
    J.B. Cheng, H.L. Yan, Y. Lu, K.W. Qiu, X.Y. Hou, J.Y. Xu, L. Han, X.M. Liu, J.K. Kim, Y.S. Luo, Mesoporous CuCo2O4 nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. J. Mater. Chem. A 3, 9769–9776 (2015)CrossRefGoogle Scholar
  41. 41.
    V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, F. Beguin, High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl. Phys. A Mater. 82, 567–573 (2006)CrossRefGoogle Scholar
  42. 42.
    K. Subramani, N. Sudhan, R. Divya, M. Sathish, All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv. 7, 6648–6659 (2017)CrossRefGoogle Scholar
  43. 43.
    J. Wen, S.Z. Li, K. Zhou, Z.C. Song, B.R. Li, Z. Chen, T. Chen, Y.X. Guo, G.J. Fang, Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes. J. Power Sources 324, 325–333 (2016)CrossRefGoogle Scholar
  44. 44.
    Y.C. Tsai, W.D. Yang, K.C. Lee, C.M. Huang, An effective electrodeposition mode for porous MnO2/Ni foam composite for asymmetric supercapacitors. Materials 9, 246 (2016)CrossRefGoogle Scholar
  45. 45.
    B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors. Mater. Chem. Phys. 170, 266–275 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jiqiu Qi
    • 1
    • 2
    • 3
  • Dongren Chen
    • 1
  • Wei Wang
    • 1
  • Yanwei Sui
    • 1
    • 2
    • 3
  • Yezeng He
    • 1
  • Qingkun Meng
    • 1
  • Fuxiang Wei
    • 1
  • Yaojian Ren
    • 1
    Email author
  • Jinlong Liu
    • 1
    • 2
    • 3
    Email author
  • Yunxue Jin
    • 4
  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and EquipmentsChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  3. 3.Xuzhou City Key Laboratory of High Efficient Energy Storage Technology and EquipmentsChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  4. 4.School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiangPeople’s Republic of China

Personalised recommendations