Advertisement

High-performance thin film transistors based on amorphous Al–N co-doped InZnO films prepared by RF magnetron sputtering

  • Yaobin Ma
  • Jinbao Su
  • Ran Li
  • Longjie Tian
  • Qi Wang
  • Xiqing ZhangEmail author
Article
  • 31 Downloads

Abstract

In this study, we developed bottom-gate thin film transistors (TFTs) using a novel amorphous Al–N co-doped InZnO thin film as an active layer and determined their electrical characteristics. The film achieved high transmittance in the visible region, and X-ray diffraction pattern confirmed the thin film’s amorphous nature. Scanning electron microscopy and atom force microscopy images revealed a thin film with a smooth and uniform surface and a low root mean square roughness. X-ray photoelectron spectroscopy confirmed that oxygen vacancies in the thin film increased after annealing. Moreover, the obtained TFT showed a saturation mobility of 31.8 cm2 V−1 s−1, a threshold voltage of 7.0 V, a subthreshold swing of 0.6 V/decade, and an on/off current ratio of 9.7 × 108.

Notes

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 51772019 and 51372016), and the Fundamental Research Funds for the Central Universities (Grant No. 2017YJS209).

References

  1. 1.
    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004)CrossRefGoogle Scholar
  2. 2.
    E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012)CrossRefGoogle Scholar
  3. 3.
    H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature RF-magnetron sputtering. Appl. Phys. Lett. 89, 112123 (2006)CrossRefGoogle Scholar
  4. 4.
    H. Hosono, Ionic amorphous oxide semiconductors: material design, carrier transport, and device application. J. Non-Cryst. Solids 352, 851–858 (2006)CrossRefGoogle Scholar
  5. 5.
    J.Y. Kwon, D.J. Lee, K.B. Kim, Transparent amorphous oxide semiconductor thin film transistor. Electron. Mater. Lett. 7, 1–11 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Lee, J. Shin, J. Jang, Top interface engineering of flexible oxide thin-film transistors by splitting active layer. Adv. Funct. Mater. 27, 1604921 (2017)CrossRefGoogle Scholar
  7. 7.
    Y.J. Im, S.J. Kim, J.H. Shin, S.S. Ha, C.H. Park, M. Yi, Improvement in the electrical performance of Ge-doped InZnO thin-film transistor. J. Nanosci. Nanotechnol. 15, 7537–7541 (2015)CrossRefGoogle Scholar
  8. 8.
    J.Y. Kwon, J.K. Jeong, Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors. Semicond. Sci. Technol. 30, 024002 (2015)CrossRefGoogle Scholar
  9. 9.
    W.H. Jeong, G.H. Kim, H.S. Shin, B. Du Ahn, H.J. Kim, M.-K. Ryu, K.-B. Park, J.-B. Seon, S.Y. Lee, Investigating addition effect of hafnium in InZnO thin film transistors using a solution process. Appl. Phys. Lett. 96, 093503 (2010)CrossRefGoogle Scholar
  10. 10.
    G.H. Kim, W.H. Jeong, B. Du Ahn, H.S. Shin, H.J. Kim, H.J. Kim, M.-K. Ryu, K.-B. Park, J.-B. Seon, S.-Y. Lee, Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors. Appl. Phys. Lett. 96, 163506 (2010)CrossRefGoogle Scholar
  11. 11.
    J.S. Park, K. Kim, Y.G. Park, Y.G. Mo, H.D. Kim, J.K. Jeong, Novel ZrInZnO Thin-film transistor with excellent stability. Adv. Mater. 21, 329–333 (2009)CrossRefGoogle Scholar
  12. 12.
    S. Parthiban, J.-Y. Kwon, Amorphous boron-indium-zinc-oxide active channel layers for thin-film transistor fabrication. J. Mater. Chem. C 3, 1661–1665 (2015)CrossRefGoogle Scholar
  13. 13.
    J.I. Park, Y. Lim, M. Jang, S.-I. Choi, N. Hwang, M. Yi, Improved stability of aluminum co-sputtered indium zinc oxide thin-film transistor. Mater. Res. Bull. 96, 155–159 (2017)CrossRefGoogle Scholar
  14. 14.
    K.M. Kim, W.H. Jeong, D.L. Kim, Y.S. Rim, Y. Choi, M.K. Ryu, K.B. Park, H.J. Kim, Low-temperature solution processing of AlInZnO/InZnO dual-active thin-film transistors. IEEE Electron Device Lett. 32, 1242–1244 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Raja, K. Jang, N. Balaji, W. Choi, T. Thuy, J.Yi Trinh, Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors. Appl. Phys. Lett. 102, 083505 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Lim, J.-M. Kim, D. Kim, S. Kwon, J.-S. Park, H. Kim, Atomic layer deposition ZnO: n thin film transistor: the effects of N concentration on the device properties. J. Electrochem. Soc. 157, H214–H218 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Han, H. Yan, Y.-C. Tsai, Y. Li, Q. Zhang, H.-P.D. Shieh, Influences of nitrogen doping on the electrical characteristics of indium-zinc-oxide thin film transistors. IEEE Trans. Device Mater. Reliab. 16, 642–646 (2016)CrossRefGoogle Scholar
  18. 18.
    D.A. Byung, K.H. Lee, J. Park, J.S. Park, The effect of nitrogen incorporation in Ge–In–Ga–O semiconductor and the associated thin film transistors. Appl. Surf. Sci. 355, 1267–1271 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Gao, J. Lu, J. Zhang, X. Li, Influence of annealing temperatures on solution-processed AlInZnO thin film transistors. J. Alloys Compd. 646, 675–679 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Jiang, K. Huang, J. Li, S. Li, Y. Gao, W. Tang, X. Guo, J. Wang, T. Mei, X. Wang, High carrier mobility low-voltage ZnO thin film transistors fabricated at a low temperature via solution processing. Ceram. Int. 44, 11751–11756 (2018)CrossRefGoogle Scholar
  21. 21.
    T.-M. Pan, B.-J. Peng, J.-L. Her, B.-S. Lou, Effect of In and Zn content on structural and electrical properties of InZnSnO thin-film transistors using an Yb2TiO5 gate dielectric. IEEE Trans. Electron. Dev. 64, 2233–2238 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Jeong, Y.G. Ha, J. Moon, A. Facchetti, T.J. Marks, Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. 22, 1346–1350 (2010)CrossRefGoogle Scholar
  23. 23.
    K.H. Ji, J.I. Kim, H.Y. Jung, S.Y. Park, R. Choi, U.K. Kim, C.S. Hwang, D. Lee, H. Hwang, J.K. Jeong, Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. Appl. Phys. Lett. 98, 103509 (2011)CrossRefGoogle Scholar
  24. 24.
    J. Eun Lee, B.K. Sharma, S.-K. Lee, H. Jeon, B. Hee Hong, H.-J. Lee, J.-H. Ahn, Thermal stability of metal Ohmic contacts in indium gallium zinc oxide transistors using a graphene barrier layer. Appl. Phys. Lett. 102, 113112 (2013)CrossRefGoogle Scholar
  25. 25.
    J.Y. Bak, S. Yang, S.M. Yoon, Transparent Al-In-Zn-O Oxide semiconducting films with various in composition for thin-film transistor applications. Ceram. Int. 39, 2561–2566 (2013)CrossRefGoogle Scholar
  26. 26.
    G. Li, J. Zhou, Y. Huang, M. Yang, J. Feng, Q. Zhang, Indium zinc oxide semiconductor thin films deposited by dc magnetron sputtering at room temperature. Vacuum 85, 22–25 (2010)CrossRefGoogle Scholar
  27. 27.
    B. Yaglioglu, H.Y. Yeom, R. Beresford, D.C. Paine, High-mobility amorphous In2O3-10 wt% ZnO thin film transistors. Appl. Phys. Lett. 89, 062103 (2006)CrossRefGoogle Scholar
  28. 28.
    R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira, E. Fortunato, Electron transport and optical characteristics in amorphous indium zinc oxide films. J. Non-Cryst. Solids 352, 1471–1474 (2006)CrossRefGoogle Scholar
  29. 29.
    S. Jeong, Y.G. Ha, J. Moon, A. Facchetti, T.J. Marks, Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. 22, 1346–1350 (2010)CrossRefGoogle Scholar
  30. 30.
    S.J. Jeon, J.W. Chang, K.S. Choi, J.P. Kar, T.I. Lee, J.M. Myoung, Enhancement in electrical performance of indium gallium zinc oxide-based thin film transistors by low temperature thermal annealing. Mater. Sci. Semicond. Proc. 13, 320–324 (2010)CrossRefGoogle Scholar
  31. 31.
    N. Dehuff, E. Kettenring, D. Hong, H. Chiang, J. Wager, R. Hoffman, C.-H. Park, D. Keszler, Transparent thin-film transistors with zinc indium oxide channel layer. J. Appl. Phys. 97, 064505 (2005)CrossRefGoogle Scholar
  32. 32.
    H. Kim, D. Choi, S. Park, K. Park, H.-W. Park, K.-B. Chung, J.-Y. Kwon, Impact of bias stability for crystalline InZnO thin-film transistors. Appl. Phys. Lett. 110, 232104 (2017)CrossRefGoogle Scholar
  33. 33.
    D.H. Cho, S. Yang, S.H.K. Park, C. Byun, S.M. Yoon, J.I. Lee, C.S. Hwang, H.Y. Chu, K.I. Cho, 21.2: Al and Sn-Doped Zinc Indium Oxide Thin Film Transistors for AMOLED Back-Plane. SID Symposium Digest of Technical Papers (Blackwell Publishing Ltd., Oxford, UK, 2009) vol. 40, pp. 280–283Google Scholar
  34. 34.
    M.J. Park, J.Y. Bak, J.S. Choi, S.M. Yoon, Impact of aluminum incorporation into In-Zn-O active channel for highly-stable thin-film transistor using solution process. ECS Solid State Lett. 3, Q44–Q46 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yaobin Ma
    • 1
  • Jinbao Su
    • 1
  • Ran Li
    • 1
  • Longjie Tian
    • 1
  • Qi Wang
    • 1
  • Xiqing Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic TechnologyBeijing Jiaotong UniversityBeijingChina

Personalised recommendations