Advertisement

Analysis of electrical properties of graphene–ZnO/n-Si(111) Schottky contact

  • Yapeng LiEmail author
  • Yingfeng Li
  • Jianhua Zhang
  • Xiangyu Zou
  • Fanying Meng
  • Rui Wu
Article
  • 16 Downloads

Abstract

In this article, the graphene (G)–ZnO composite films was prepared on the surface of n-Si(111) substrate by sol–gel method for the formation of G–ZnO/n-Si(111) Schottky contact. The results show that the growth direction of ZnO films can be changed from (002) to (101) by adding G, and the surface roughness of ZnO films can be reduced. By the means of current–voltage (IV) measurements, it is observed that barrier height values increased and ideality factor decreased with the increasing of G content, indicating that G can significantly improve the rectifying characteristics of ZnO/n-Si (111) Schottky contacts. This phenomenon is mainly due to the reduction of oxygen vacancies in ZnO thin films by adding G. Meanwhile, the barrier height calculated by capacitance–voltage (CV) method is higher than IV method, which may be due to the existence of an interface layer or the effect of the image force.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China under Contract No. 51504147, the Industrial Field of Key Research and Development Plan of Shaanxi Province No. 2018GY-040, the Natural Science Foundation of Shaanxi Province No. 2014JM6240 and the Doctor Foundation of Shaanxi University of Technology No. SLGQD2017-12.

References

  1. 1.
    Q. Zhang, X. Gu, Q. Zhang, J. Jiang, X. Jin, F. Li, Z. Chen, F. Zhao, Q. Li, Opt. Mater. Express 8, 909 (2018)CrossRefGoogle Scholar
  2. 2.
    Y.K. Chan, H.P. Ju, T.G. Kim, J. Alloy Compd 732, 300 (2018)CrossRefGoogle Scholar
  3. 3.
    J. Pan, Y. Sheng, J. Zhang, P. Huang, X. Zhang, B. Feng, ACS Appl. Mater. Interfaces 7, 7878 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Shet, K.S. Ahn, Y. Yan, T. Deutsch, K.M. Chrustowski, J. Turner, M. Al-Jassim, N. Ravindra, J. Appl. Phys. 103, 37 (2008)CrossRefGoogle Scholar
  5. 5.
    K.S. Ahn, Y. Yan, S. Shet, T.G. Deutsch, J.A. Turner, M. Al-Jassim, Appl. Phys. Lett. 91, 37 (2007)Google Scholar
  6. 6.
    R. Nasser, H. Elhouichet, J. Lumin. (2018).  https://doi.org/10.1016/j.jlumin.2017.11.060 Google Scholar
  7. 7.
    T.V. Torchynska, B.E. Filali, G. Polupan, L. Shcherbyna, J.L. Casas Espinola, J. Mater. Sci. Mater. Electron. 29, 15452 (2018)CrossRefGoogle Scholar
  8. 8.
    F.K. Shan, B.I. Kim, G.X. Liu, Z. Liu, J. Sohn, W.J. Lee, B.C. Shin, Y.S. Yu, J. Appl. Phys. 95, 4772 (2004)CrossRefGoogle Scholar
  9. 9.
    J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Y.M. Kim, Appl. Phys. Lett. 84, 1338 (2004)CrossRefGoogle Scholar
  10. 10.
    D.B. Buchholz, R.P.H. Chang, J.Y. Song, J.B. Ketterson, Appl. Phys. Lett. 87, 082504 (2005)CrossRefGoogle Scholar
  11. 11.
    S.H. Jeong, J.H. Park, B.T. Lee, J. Alloy Compd 617, 180 (2014)CrossRefGoogle Scholar
  12. 12.
    C. Jia, H. Tan, Y. Yang, Semicond. Opt. 33, 379 (2012)Google Scholar
  13. 13.
    Y. Huang, M. Liu, L. Zhen, Y. Zeng, S. Liu, Mater. Sci. Eng. B 97, 111 (2003)CrossRefGoogle Scholar
  14. 14.
    Q. Bao, K.P. Loh, ACS Nano 6, 3677 (2012)CrossRefGoogle Scholar
  15. 15.
    X. Li, M. Rui, J. Song, Z. Shen, H. Zeng, Adv. Funct. Mater. 25, 4929 (2015)CrossRefGoogle Scholar
  16. 16.
    R. Watanabe, R. Matsuzaki, H. Endo, K. Jun, J. Mater. Sci. 53, 1148 (2018)CrossRefGoogle Scholar
  17. 17.
    M.B.M. Krishna, V.P. Kumar, N. Venkatramaiah, R. Venkatesan, D.N. Rao, Appl. Phys. Lett. 98, 081106 (2011)CrossRefGoogle Scholar
  18. 18.
    D. Lin, M. Motlag, M. Saei, S. Jin, R.M. Rahimi, D. Bahr, G.J. Cheng, Acta Mater. 150, 360 (2018)CrossRefGoogle Scholar
  19. 19.
    N. Li, M. Cao, C. Hu, Nanoscale 4, 6205 (2012)CrossRefGoogle Scholar
  20. 20.
    H. Gu, L. Yu, J. Wang, J. Yao, F. Chen, Mater. Lett. 196, 168 (2017)CrossRefGoogle Scholar
  21. 21.
    F.X. Liang, G. Yang, X. Chao, X.W. Tong, Z.J. Li, L.B. Luo, J. Mater. Chem. C 6, 3815 (2018)CrossRefGoogle Scholar
  22. 22.
    S.W. Jee, S.J. Park, J. Kim, Y.C. Park, J.H. Choi, J.H. Jeong, J.H. Lee, Appl. Phys. Lett. 99, 053118 (2011)CrossRefGoogle Scholar
  23. 23.
    C. Yu, R. Li, T. Li, H. Dong, W. Jia, B. Xu, Superlattices Microstruct. 120, 298 (2018)CrossRefGoogle Scholar
  24. 24.
    F. Jiang, J. Chen, H. Bi, L. Li, W. Jing, J. Zhang, J. Dai, R. Che, C. Chen, Y. Gao, Appl. Phys. Lett. 112, 033505 (2018)CrossRefGoogle Scholar
  25. 25.
    D.S. Tsai, C.A. Lin, W.C. Lien, H.C. Chang, Y.L. Wang, J.H. He, ACS Nano 5, 7748 (2011)CrossRefGoogle Scholar
  26. 26.
    J.T. Sung, G.K. Min, P. Sungeun, Curr. Appl. Phys. 9, 1318 (2009)CrossRefGoogle Scholar
  27. 27.
    L. Agarwal, B.K. Singh, S. Tripathi, P. Chakrabarti, Thin Solid Films 612, 259 (2016)CrossRefGoogle Scholar
  28. 28.
    R.J. Zhu, X.A. Zhang, J.W. Zhao, R.P. Li, W.F. Zhang, J. Alloy Compd 631, 125 (2015)CrossRefGoogle Scholar
  29. 29.
    N. Liu, G. Fang, Z. Wei, Z. Hai, C. Fei, Z. Qiao, L. Yuan, X. Zou, X. Zhao, ACS Appl. Mater. Interfaces 2, 1973 (2010)CrossRefGoogle Scholar
  30. 30.
    S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J. Appl. Phys. 98, 013505 (2005)CrossRefGoogle Scholar
  31. 31.
    S.M. Park, T. Ikegami, K. Ebihara, P.K. Shin, Appl. Surf. Sci. 253, 1522 (2006)CrossRefGoogle Scholar
  32. 32.
    H. Kim, Z. Wang, M.N. Hedhili, N. Wehbe, H.N. Alshareef, Chem. Mater. (2017).  https://doi.org/10.1021/acs.chemmater.6b04654 Google Scholar
  33. 33.
    J. Lee, K. Ko, B. Park, J. Cryst. Growth 247, 119 (2003)CrossRefGoogle Scholar
  34. 34.
    D. Basak, G. Amin, B. Mallik, G.K. Paul, S.K. Sen, J. Cryst. Growth 256, 73 (2003)CrossRefGoogle Scholar
  35. 35.
    J.P. Lin, J.M. Wu, Appl. Phys. Lett. 92, 78 (2008)Google Scholar
  36. 36.
    C. Zhang, J. Phys. Chem. Solids 71, 364 (2010)CrossRefGoogle Scholar
  37. 37.
    R. Paul, R.N. Gayen, S. Biswas, S.V. Bhat, R. Bhunia, RSC Adv. 6, 61661 (2016)CrossRefGoogle Scholar
  38. 38.
    A. Mahroug, S. Boudjadar, S. Hamrit, L. Guerbous, J. Mater. Sci. Mater. Electron. 25, 4967 (2014)CrossRefGoogle Scholar
  39. 39.
    L. Ouarez, A. Chelouche, T. Touam, R. Mahiou, D. Djouadi, A. Potdevin, J. Lumin. (2018).  https://doi.org/10.1016/j.jlumin.2018.06.049 Google Scholar
  40. 40.
    R. Chandramohan, T.A. Vijayan, S. Arumugam, H.B. Ramalingam, V. Dhanasekaran, K. Sundaram, T. Mahalingam, Mater. Sci. Eng. B 176, 152 (2011)CrossRefGoogle Scholar
  41. 41.
    F. Eskandari, M. Ranjbar, P. Kameli, H. Salamati, J. Alloy Compd 649, 35 (2015)CrossRefGoogle Scholar
  42. 42.
    N.J. Dhananjay, P.R. Choudhury, S.B. Krupanidhi, J. Phys. D 39, 2664 (2006)CrossRefGoogle Scholar
  43. 43.
    M. Thambidurai, J.Y. Kim, J. Song, Y. Ko, N. Muthukumarasamy, D. Velauthapillai, C. Lee, Sol. Energy 106, 95 (2014)CrossRefGoogle Scholar
  44. 44.
    D. Pradhan, K.T. Leung, Langmuir 24, 9707 (2008)CrossRefGoogle Scholar
  45. 45.
    M.W. Zhu, N. Huang, J. Gong, B. Zhang, Z.J. Wang, C. Sun, X. Jiang, Appl. Phys. A 103, 159 (2011)CrossRefGoogle Scholar
  46. 46.
    M.Q. Yang, Y.J. Xu, J. Phys. Chem. C 117, 21724 (2013)CrossRefGoogle Scholar
  47. 47.
    O.A. Yıldırım, C. Durucan, Ceram. Int. 42, 3229 (2016)CrossRefGoogle Scholar
  48. 48.
    W. Yang, Z. Liu, D.L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, Appl. Surf. Sci. 255, 5669 (2009)CrossRefGoogle Scholar
  49. 49.
    D.Y. Cho, Curr. Appl. Phys. 15, 1337 (2015)CrossRefGoogle Scholar
  50. 50.
    M. Garg, T.R. Naik, C.S. Pathak, S. Nagarajan, V.R. Rao, R. Singh, Appl. Phys. Lett. 112, 163502 (2018)CrossRefGoogle Scholar
  51. 51.
    D. Ferrah, O. Renault, C. Petit-Etienne, H. Okuno, C. Berne, V. Bouchiat, G. Cunge, Surf. Interface Anal. 48, 451 (2016)CrossRefGoogle Scholar
  52. 52.
    R. Jayakrishnan, K. Mohanachandran, R. Sreekumar, C. Sudha Kartha, K.P. Vijayakumar, Mater. Sci. Semicond. Process. 16, 326 (2013)CrossRefGoogle Scholar
  53. 53.
    D. Fu, G. Han, F. Yang, T. Zhang, Y. Chang, F. Liu, Appl. Surf. Sci. 283, 654 (2013)CrossRefGoogle Scholar
  54. 54.
    L. Sang, B. Ren, M. Sumiya, M. Liao, H. Amano, Appl. Phys. Lett. 111, 122102 (2017)CrossRefGoogle Scholar
  55. 55.
    Y. Li, Y. Li, J. Zhang, T. Tong, W. Ye, J. Phys. D 51, 095104 (2018)CrossRefGoogle Scholar
  56. 56.
    I. Hussain, M.Y. Soomro, N. Bano, O. Nur, M. Willander, J. Appl. Phys. 113, 234509 (2013)CrossRefGoogle Scholar
  57. 57.
    R. Jaramillo, A. Youssef, A. Akey, F. Schoofs, S. Ramanathan, T. Buonassisi, Phys. Rev. Appl. 6, 034016 (2016)CrossRefGoogle Scholar
  58. 58.
    H.V. Wenckstern, G. Biehne, R.A. Rahman, H. Hochmuth, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 88, 2260 (2006)Google Scholar
  59. 59.
    D. Somvanshi, S. Jit, IEEE Electron Device Lett. 34, 1238 (2013)CrossRefGoogle Scholar
  60. 60.
    C. Tsiarapas, D. Girginoudi, N. Georgoulas, Semicond. Sci. Technol. 29, 137 (2014)CrossRefGoogle Scholar
  61. 61.
    I. Hussain, M.Y. Soomro, N. Bano, O. Nur, M. Willander, J. Appl. Phys. 112, 064506 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yapeng Li
    • 1
    Email author
  • Yingfeng Li
    • 2
  • Jianhua Zhang
    • 1
  • Xiangyu Zou
    • 1
  • Fanying Meng
    • 1
  • Rui Wu
    • 3
  1. 1.School of Materials Science and EngineeringShaanxi University of TechnologyHanzhongChina
  2. 2.School of Electrical EngineeringShaanxi University of TechnologyHanzhongChina
  3. 3.College of Chemical & Environment ScienceShaanxi University of TechnologyHanzhongChina

Personalised recommendations