Advertisement

Double-shell PANS@PANI@Ag hollow microspheres and graphene dispersed in epoxy with enhanced microwave absorption

  • Bin ZhangEmail author
  • Jun WangEmail author
  • Jiashun Peng
  • Jiuxiao Sun
  • Xiaogang Su
  • Yi Zou
  • Yu Zhou
Article
  • 57 Downloads

Abstract

Double-shell hollow conductive poly(acrylonitrile) microspheres@polyaniline@Ag (PANS@PANI@Ag) was synthesized by a facile two-step method. Polyaniline-coated poly(acrylonitrile) microspheres (PANS@PANI) prepared by in situ polymerization exhibited a porous, corrugated and compact conductive network, making for the formation and attachment of Ag nanoparticles. Incorporating these hollow conductive spheres and reduced graphene oxide (RGO) into epoxy resin, a lightweight microwave absorber was brought out. The chemical composition, micro-structure surface morphology and electromagnetic properties were thoroughly characterized and analyzed. The calculated results showed that the optimal reflection loss (RL) was − 44.9 dB at 9.16 GHz with a constitution of 1 wt% dielectric RGO and 1 wt% conductive PANS@PANI@Ag, and the corresponding effective bandwidth was about 2 GHz. However, the microwave absorption capacity gradually reduced with the raise of PANS@PANI@Ag content, derived from the high conductivity leading to more microwave reflection. As the PANS@PANI@Ag content increased to 5 wt%, the minimum RL was − 14.7 dB and still remained an effective absorption performance with a lower density of 0.47–0.53 g/cm3. Therefore, the as-obtained composites paved a new route for lightweight and strong absorption microwave absorbers in commercial and military application.

Notes

Acknowledgements

We gratefully thank for the financial support from the National Natural Science Foundation of China (Grant No. 51672201) and the Fundamental Research Funds for the Central Universities (WUT 2017-YB-006).

References

  1. 1.
    L. Wang, B. Wen, X. Bai, C. Liu, H. Yang, J. Colloid Interface Sci. 540, 30 (2019)CrossRefGoogle Scholar
  2. 2.
    B. Quan, X.H. Liang, G.B. Ji, Y. Cheng, W. Liu, J.N. Ma, Y.N. Zhang, D.R. Li, G.Y. Xu, J. Alloys Compd. 728, 1065 (2017)CrossRefGoogle Scholar
  3. 3.
    M.K. Vyas, A. Chandra, J. Mater. Sci. 54, 1304 (2019)CrossRefGoogle Scholar
  4. 4.
    M.K. Naidu, K. Ramji, B.V.S.R.N. Santhosi, K.K. Murthy, C. Subrahmanyam, B. Satyanarayana, Adv. Polym. Technol. 37, 622 (2018)CrossRefGoogle Scholar
  5. 5.
    F. Zhang, W.D. Zhang, W.F. Zhu, B. Cheng, H. Qiu, S.H. Qi, Appl. Surf. Sci. 463, 182 (2019)CrossRefGoogle Scholar
  6. 6.
    Y.L. Zhang, X.X. Wang, M.S. Cao, Nano Res. 11, 1426 (2018)CrossRefGoogle Scholar
  7. 7.
    J. Dai, H. Yang, B. Wen, H. Zhou, L. Wang, Y. Lin, Appl. Surf. Sci. 479, 1226 (2019)CrossRefGoogle Scholar
  8. 8.
    B. Zhang, J. Wang, X.C. Chen, X.G. Su, Y. Zou, S.Q. Huo, W. Chen, J.P. Wang, Mater. Res. Express 5, 045040 (2018)CrossRefGoogle Scholar
  9. 9.
    Y. Akinay, F. Hayat, Y. Kanbur, H. Gokkaya, S. Polat, Polym. Compos. 39, E2143 (2018)CrossRefGoogle Scholar
  10. 10.
    L. Liu, N. He, T. Wu, P.B. Hu, G.X. Tong, Chem. Eng. J. 355, 103 (2019)CrossRefGoogle Scholar
  11. 11.
    H.L. Lv, Y.H. Guo, Z.H. Yang, Y. Cheng, L.Y.P. Wang, B.S. Zhang, Y. Zhao, Z.C.J. Xu, G.B. Ji, J. Mater. Chem. C 5, 491 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Acharya, J. Ray, T.U. Patro, P. Alegaonkar, S. Datar, Nanotechnology 29, 115605 (2018)CrossRefGoogle Scholar
  13. 13.
    Q. Yuchang, W. Qinlong, L. Fa, Z. Wancheng, J. Mater. Chem. C 4, 4853 (2016)CrossRefGoogle Scholar
  14. 14.
    Q. Yuchang, W. Qinlong, L. Fa, Z. Wancheng, Z. Dongmei, J. Mater. Chem. C 4, 371 (2016)CrossRefGoogle Scholar
  15. 15.
    Z.B. Su, L. Tan, J. Tao, C. Zhang, R.Q. Yang, F.S. Wen, Phys. Status Solidi B 255, 1700553 (2018)CrossRefGoogle Scholar
  16. 16.
    X.D. Liu, Y. Huang, N. Zhang, S.H. Zhou, Ceram. Int. 44, 22189 (2018)CrossRefGoogle Scholar
  17. 17.
    R.D. Pyarasani, T. Jayaramudu, A. John, J. Mater. Sci. 54, 974 (2019)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, W. Wang, D. Yu, Appl. Surf. Sci. 425, 518 (2017)CrossRefGoogle Scholar
  19. 19.
    M.S.S. Dorraji, M.H. Rasoulifard, M.H. Khodabandeloo, M. Rastgouy-Houjaghan, H.K. Zarajabad, Appl. Surf. Sci. 366, 210 (2016)CrossRefGoogle Scholar
  20. 20.
    J. Yan, Y. Huang, C. Wei, N. Zhang, P.B. Liu, Composites A 99, 121 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Farhan, R.M. Wang, K.Z. Li, J. Mater. Sci. 51, 7991 (2016)CrossRefGoogle Scholar
  22. 22.
    T.H. Ting, K.H. Wu, J.S. Hsu, M.H. Chuang, C.C. Yang, J. Chin. Chem. Soc. 55, 724 (2008)CrossRefGoogle Scholar
  23. 23.
    M. Kalkan Erdoğan, M. Karakışla, M. Saçak, J. Compos. Mater. 52, 1353 (2017)CrossRefGoogle Scholar
  24. 24.
    B. Cheng, J. Wang, F. Zhang, S. Qi, Polym. Bull. 75, 381 (2017)CrossRefGoogle Scholar
  25. 25.
    W. Zhao, Q.Y. Zhang, H.P. Zhang, J.P. Zhang, J. Alloys Compd. 473, 206 (2009)CrossRefGoogle Scholar
  26. 26.
    Z. He, S. Qi, X. Zhong, H. Oiu, J. Wang, J. Mater. Sci. Mater. Electron. 25, 3455 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Wang, H. Qiu, X.L. Zhong, S.H. Qi, J. Mater. Sci. Mater. Electron. 28, 5852 (2017)CrossRefGoogle Scholar
  28. 28.
    P. Yan, J. Miao, J. Cao, H. Zhang, C.P. Wang, A.J. Xie, Y.H. Shen, J. Mater. Sci. 52, 13078 (2017)CrossRefGoogle Scholar
  29. 29.
    D.N. Joshi, P. Ilaiyaraja, C. Sudakar, R.A. Prasath, Sol. Energy Mater. Sol. Cells 185, 104 (2018)CrossRefGoogle Scholar
  30. 30.
    Y. Wang, X.M. Wu, W.Z. Zhang, C.Y. Luo, J.H. Li, Y.J. Wang, Mater. Res. Bull. 98, 59 (2018)CrossRefGoogle Scholar
  31. 31.
    E.J. Jelmy, S. Ramakrishnan, N.K. Kothurkar, Polym. Adv. Technol. 27, 1246 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Fu, L. Ma, M. Gan, S. Wang, X. Zhang, J. Zhang, T. Zhou, H. Wang, J. Mater. Sci. Mater. Electron. 28, 3621 (2016)CrossRefGoogle Scholar
  33. 33.
    C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du, S.R. Hu, J.Y. Wang, X.H. Wang, Appl. Phys. Lett. 98, 072906 (2011)CrossRefGoogle Scholar
  34. 34.
    S.D. Kim, W.G. Choe, J. Choi, J.R. Jeong, Powder Technol. 342, 301 (2019)CrossRefGoogle Scholar
  35. 35.
    Y. Wang, X.M. Wu, W.Z. Zhang, J.H. Li, C.Y. Luo, Q.G. Wang, Synth. Met. 229, 82 (2017)CrossRefGoogle Scholar
  36. 36.
    B. Zhang, J. Wang, J.P. Wang, S.Q. Hun, B. Zhang, Y.S. Tang, J. Magn. Magn. Mater. 413, 81 (2016)CrossRefGoogle Scholar
  37. 37.
    B. Zhao, C. Ma, L.Y. Liang, W.H. Guo, B.B. Fan, X.Q. Guo, R. Zhang, CrystEngComm 19, 3640 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Zhao, S. Pei, W. Ren, L. Gao, H.M. Cheng, ACS Nano 4, 5245 (2010)CrossRefGoogle Scholar
  39. 39.
    Y.C. Qing, H.Y. Nan, F. Luo, W.C. Zhou, RSC Adv. 7, 27755 (2017)CrossRefGoogle Scholar
  40. 40.
    A.F. Ahmad, Z. Abbas, S.J. Obaiys, M.F. Zainuddin, Polym. Compos. 39, E1778 (2018)CrossRefGoogle Scholar
  41. 41.
    H. Wang, F. Meng, F. Huang, C. Jing, Y. Li, W. Wei, Z. Zhou, ACS Appl. Mater. Interfaces 11, 12142 (2019)CrossRefGoogle Scholar
  42. 42.
    B.A. Zhao, X.Q. Guo, Y.Y. Zhou, T.T. Su, C. Ma, R. Zhang, CrystEngComm 19, 2178 (2017)CrossRefGoogle Scholar
  43. 43.
    Y.C. Qing, H.Y. Nan, H.Y. Jia, D.D. Min, W.C. Zhou, F. Luo, J. Mater. Sci. 54, 4671 (2019)CrossRefGoogle Scholar
  44. 44.
    Y. Wang, X. Gao, C.H. Lin, L.Y. Shi, X.H. Li, G.L. Wu, J. Alloys Compd. 785, 765 (2019)CrossRefGoogle Scholar
  45. 45.
    N. Zhang, Y. Huang, M. Wang, X. Liu, M. Zong, J. Colloid Interface Sci. 534, 110 (2019)CrossRefGoogle Scholar
  46. 46.
    H. Pang, A.M. Abdalla, R.P. Sahu, Y. Duan, I.K. Puri, J. Mater. Sci. 53, 16288 (2018)CrossRefGoogle Scholar
  47. 47.
    Y. Lin, J.J. Dong, H.W. Zong, B. Wen, H.B. Yang, ACS Sustain. Chem. Eng. 6, 10011 (2018)CrossRefGoogle Scholar
  48. 48.
    Y. Wang, X. Gao, W. Zhang, C. Luo, L. Zhang, P. Xue, J. Alloys Compd. 757, 372 (2018)CrossRefGoogle Scholar
  49. 49.
    J. Dong, Y. Lin, H. Zong, H. Yang, L. Wang, Z. Dai, Inorg. Chem. 58, 2031 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringWuhan Textile UniversityWuhanPeople’s Republic of China
  2. 2.Ministry of Education Key Laboratory of Textile Fiber ProductsWuhan Textile UniversityWuhanPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  4. 4.Shenzhen Foreign Languages SchoolShenzhenPeople’s Republic of China

Personalised recommendations