Synthesis and electrochemical performance of vanadium sulfide as novel anode for lithium ion battery application

  • Xiao Chen
  • Yong Lu
  • Chuanqi FengEmail author


The patronite form of vanadium sulfide (VS4) is synthesized successfully via facile hydrothermal method using ammonium metavanadate and thioacetamideas starting materials at suitable temperature. The expected compounds are characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) techniques. The electrochemical properties of the expected compounds are tested. The conversion mechanism of VS4 during the lithium intercalation–deintercalation process and the lithium ion diffusion coefficient of VS4 are discussed also. The results indicated that the sphere-like VS4 sample synthesized at 160 °C exhibited best electrochemical performances (such as higher reversible specific capacity, better cycling stability, and larger lithium ion diffusion coefficient) among all samples. The VS4 obtained by hydrothermal method at 160 °C may be a promising anode material for lithium ion batteries.



  1. 1.
    J.Z. Wang, L. Lu, M. Lotya, J.N. Coleman, S.L. Chou, H.-K. Liu, A.I. Minett, J. Chen, Adv. Energy Mater. 3, 798 (2013)CrossRefGoogle Scholar
  2. 2.
    J. Guo, X. Chen, S.H. Jin, M.M. Zhang, C.H. Liang, Catal. Today 246, 165 (2015)CrossRefGoogle Scholar
  3. 3.
    C.Q. Feng, J. Ma, H. Li, R. Zeng, Z.P. Guo, H.K. Liu, Mater. Res. Bull. 44, 1811 (2009)CrossRefGoogle Scholar
  4. 4.
    D. Lembke, S. Bertolazzi, A. Kis, Acc. Chem. Res. 48, 100 (2015)CrossRefGoogle Scholar
  5. 5.
    L.J. Yang, W.J. Zhou, D.M. Hou, K. Zhou, G.Q. Li, Z.H. Tang, L.G. Li, S.W. Chen, Nanoscale 7, 5203 (2015)CrossRefGoogle Scholar
  6. 6.
    Y.G. Li, H.L. Wang, L.M. Xie, Y.Y. Liang, G.S. Hong, H.J. Dai, J. Am. Chem. Soc. 133, 7296 (2011)CrossRefGoogle Scholar
  7. 7.
    K.G. Zhou, N.N. Mao, H.X. Wang, Y. Peng, H.L. Zhang, Angew. Chem. Int. Ed. 50, 10839 (2011)CrossRefGoogle Scholar
  8. 8.
    C.Q. Feng, L.F. Huang, Z.P. Guo, H.K. Liu, Electrochem. Commun. 9, 119 (2007)CrossRefGoogle Scholar
  9. 9.
    C.Q. Song, K. Yu, H.H. Yin, H. Fu, Z.L. Zhang, N. Zhang, Z.Q. Zhu, J. Mater. Chem. C 2, 4196 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Feng, X. Sun, C.Z. Wu, L. Peng, C. Lin, S. Hu, J. Yang, Y. Xie, J. Am. Chem. Soc. 133, 17832 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Jing, Z. Zhou, C.R. Cabrera, Z.F. Chen, J. Phys. Chem. C 117, 25409 (2013)CrossRefGoogle Scholar
  12. 12.
    A.V. Murugan, C.S. Gopinath, K. Vijayamohanan, Electrochem. Commun. 7, 213 (2005)CrossRefGoogle Scholar
  13. 13.
    J. Feng, L.L. Peng, C.Z. Wu, X. Sun, S. Hu, C. Lin, J. Dai, J. Yang, Y. Xie, Adv. Mater. 24, 1969 (2012)CrossRefGoogle Scholar
  14. 14.
    M.N. Kozlova, Y.V. Mironov, E.D. Grayfer, A.I. Smolentsev, V.I. Zaikovskii, N.A. Nebogatikova, T.Y. Podlipskaya, V.E. Fedorov, Chem.-Eur. J. 21, 4639 (2015)CrossRefGoogle Scholar
  15. 15.
    C.S. Rout, B.H. Kim, X. Xu, J. Yang, H.Y. Jeong, D. Odkhuu, N. Park, J. Cho, H.S. Shin, J. Am. Chem. Soc. 135, 8720 (2013)CrossRefGoogle Scholar
  16. 16.
    X.D. Xu, S. Jeong, C.S. Rout, P. Oh, M. Ko, H. Kim, M.G. Kim, R. Cao, H.S. Shin, J. Cho, J. Mater. Chem. A 2, 10847 (2014)CrossRefGoogle Scholar
  17. 17.
    W.W. Guo, D.F. Wu, Int. J. Hydrog. Energy 39, 16832 (2014)CrossRefGoogle Scholar
  18. 18.
    W. Liang, Y.F. Niu, S.H. Ge, S. Song, J. Su, Z. Luo, Int. J. Nanomed. 7, 5151 (2012)Google Scholar
  19. 19.
    J. Ni, W.T. Jiang, K. Yu, Y.F. Gao, Z.Q. Zhu, Electrochim. Acta 56, 2122 (2011)CrossRefGoogle Scholar
  20. 20.
    Y. Yang, Y. Lu, W. Wang, C. Feng, S. Yang, J. Nanosci. Nanotechnol. 15, 1 (2015)CrossRefGoogle Scholar
  21. 21.
    L. Wang, Z. Xu, W. Wang, X. Bai, J. Am. Chem. Soc. 136, 6693 (2014)CrossRefGoogle Scholar
  22. 22.
    H. Hwang, H. Kim, J. Cho, Nano Lett. 11, 4826 (2011)CrossRefGoogle Scholar
  23. 23.
    Y. Kim, J.B. Goodenough, J. Chem. Phys. C 112, 15060 (2008)CrossRefGoogle Scholar
  24. 24.
    X.D. Xu, W. Liu, Y. Kim, J. Cho, Nano Today 9, 604 (2014)CrossRefGoogle Scholar
  25. 25.
    K. Chang, W. Chen, J. Mater. Chem. 21, 17175 (2011)CrossRefGoogle Scholar
  26. 26.
    H. Wu, G.Y. Zheng, N. Liu, T.J. Carney, Y. Yang, Y. Cui, Nano Lett. 12, 904 (2012)CrossRefGoogle Scholar
  27. 27.
    M.D. Slater, D.H. Kim, E.J. Lee, C.S. Johnson, Adv. Funct. Mater. 23, 947 (2013)CrossRefGoogle Scholar
  28. 28.
    K. Xu, Chem. Rev. 114, 11503 (2014)CrossRefGoogle Scholar
  29. 29.
    X.P. Fang, C.X. Hua, X.W. Guo, Y.S. Hu, Z.X. Wang, X.P. Gao, F. Wu, J.Z. Wang, L.Q. Chen, Electrochim. Acta 81, 155 (2012)CrossRefGoogle Scholar
  30. 30.
    R.R. Chen, Y.X. Wu, X.Y. Kong, J. Power Sources 258, 246 (2014)CrossRefGoogle Scholar
  31. 31.
    C. Young-Min, S.I. Pyun, Solid State Ionics 99, 173 (1997)CrossRefGoogle Scholar
  32. 32.
    A.V. Murugan, T. Muraliganth, A. Manthiram, J. Electrochem. Soc. 156, A79 (2009)CrossRefGoogle Scholar
  33. 33.
    W. Wang, Y. Yang, S.J. Yang, Z.P. Guo, C.Q. Feng, X.C. Tang, Electrochim. Acta 155, 297 (2015)CrossRefGoogle Scholar
  34. 34.
    H. Kanoh, Q. Feng, T. Hirotsu, K. Ooi, J. Electrochem. Soc. 143, 2610 (1996)CrossRefGoogle Scholar
  35. 35.
    D. Zhang, B.N. Popov, R.E. White, J. Power Sources 76, 81 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for Synthesis and Applications of Organic Functional MoleculesHubei UniversityWuhanChina
  2. 2.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjinChina

Personalised recommendations