Advertisement

Highly efficient K0.4Na3.6Co(MoO4)3 new alluaudite type structure for photocatalytic degradation of methylene blue and green diamine B dyes

  • R. NasriEmail author
  • T. Larbi
  • M. Amlouk
  • M. F. Zid
Article
  • 11 Downloads

Abstract

A novel alluaudite framework K0.4Na3.6Co(MoO4)3 photocatalyst has been synthesized by a solid-state reaction for degradation of both methylene blue (MB) and green diamine B (GDB) organic pollutants under sunlight. The sample was characterized using X-ray diffraction (XRD), transmission electron microscope, infrared spectroscopy and Raman spectroscopy, as well as by means of photoluminescence probing, impedance spectroscopy and UV–vis–NIR spectrophotometry. The XRD analysis reveals that such alluaudite type structure crystallizes in the monoclinic system with space group C2/c. Emissions of this material have been observed in a visible region at 290 nm excitation with a broad long-wave luminescence band from oxygen vacancies. UV–vis absorption spectrum measurements showed an efficient optical absorption in UV–vis region with a direct band gap of 3.37 eV. The complex impedance spectra suggested that the ac conductivity is a power law (Aωs) derived by the correlated barrier hopping conduction mechanism. The efficiency of the dyes removal in the presence of K0.4Na3.6Co(MoO4)3 particles reaches 83% for MB and 53% for GDB under sunlight irradiation. The current studies establish interesting possibilities for investigating catalytic cycles of these solar light activated photocatalysts.

Notes

References

  1. 1.
    N.I. Sorokin, Phys. Solid State 51(6), 1128–1130 (2009)CrossRefGoogle Scholar
  2. 2.
    M. Chakir, A.E. Jazouli, D. Waal, Mater. Res. Bull. 38, 1773–1779 (2003)CrossRefGoogle Scholar
  3. 3.
    J.A. Ibers, G.W. Smith, Acta Crystallogr. 17, 190–197 (1964)CrossRefGoogle Scholar
  4. 4.
    H. Bensaid, A. El Bouari, S. Benmokhtar, B. Manoun, L. Bih, P. Lazor, J. Mol. Struct. 1031, 152–159 (2013)CrossRefGoogle Scholar
  5. 5.
    W. Paragassu, A.G. Souza Filho, M. Maczka, P.T.C. Freire, F.E.A. Melo, J. Mendes Filho, J. Hanuza, J. Phys. Condens. Matter 16, 5151–5161 (2004)CrossRefGoogle Scholar
  6. 6.
    A.P.A. Marques, V.M. Longo, D.M.A. De Melo, P.S. Pizani, E.R. Leite, J.A. Varela, E. Lango, J. Solid State Chem. 181, 1249–1257 (2008)CrossRefGoogle Scholar
  7. 7.
    R. Nasri, N. Fakhar Bourguiba, M.F. Zid, Acta Crystallogr. E 71, 4–7 (2015)CrossRefGoogle Scholar
  8. 8.
    R. Nasri, N. Fakhar Bourguiba, M.F. Zid, A. Driss, Acta Crystallogr. E70, i47–i48 (2014)Google Scholar
  9. 9.
    A.A. Savina, S.F. Solodovnikov, D.A. Belov, O.M. Basovich, Z.A. Solodovnikova, K.V. Pokholok, S.Y. Stefanovich, B.I. Lazoryak, E.G. Khaikina, J. Solid State Chem. 220, 217–220 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Gao, P. Zhao, K. Feng, Chem. Mater. 29(3), 940–944 (2017)CrossRefGoogle Scholar
  11. 11.
    A.A. Savina, S.F. Solodovnikov, D.A. Belov, Z.A. Solodovnikova, S.Yu. Stefanovich, B.I. Lazoryak, E.G. Khaikina, N. J. Chem. 41, 5450–5457 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Lua, L. Chen, Y. Huang, C. Chen, S. Kim, H.J. Seo, Appl. Surf. Sci. 331, 72–78 (2015)CrossRefGoogle Scholar
  13. 13.
    K. Eddahaoui, G. Mele, S. Benmokhtar, I. Pio, A. Scarlino, R. Essehli, M.A. Deyab, Int. J. Adv. Res. Chem. Sci. 2, 21–32 (2015)Google Scholar
  14. 14.
    T.T. Basiev, A.A. Sobol, P.G. Zverev, L.I. Ivleva, V.V. Osiko, R.C. Powell, Opt. Mater. 11, 307–314 (1999)CrossRefGoogle Scholar
  15. 15.
    J. Hanuza, L. Macalik, K. Hermanowicz, J. Mol. Struct. 319, 17–30 (1994)CrossRefGoogle Scholar
  16. 16.
    H. Hu, I.E. Wachs, S.R. Bare, J. Phys. Chem. 99, 10897–10910 (1995)CrossRefGoogle Scholar
  17. 17.
    V. Jeseentharani, B. Jeyaraj, A. Dayalan, K.S. Nagaraja, J. Mater. Sci. Mater. Electron. 28, 3548–3559 (2017)CrossRefGoogle Scholar
  18. 18.
    A.P. de Moura, L.H. de Oliveira, P.F.S. Pereira, I.L.V. Rosa, M.S. Li, E. Longo, J.A. Varela, Adv. Chem. Eng. Sci. 2, 465–473 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Thongtem, A. Phuruangrat, S. Thongtem, J. Nanopart. Res. 12, 2287–2294 (2010)CrossRefGoogle Scholar
  20. 20.
    K. Hermanowicz, M. Maczka, M. Wolcyrz, P.E. Tomaszewski, M. Pasciak, J. Hanuza, J. Solid State Chem. 179, 685–695 (2006)CrossRefGoogle Scholar
  21. 21.
    N.M. Rasdi, Y.W. Fen, R.S. Azis, N.A.S. Omar, Optik 149, 409–415 (2017)CrossRefGoogle Scholar
  22. 22.
    S.J. Xiao, X.J. Zhao, P.P. Hu, Z.J. Chu, C.Z. Huang, L. Zhang, ACS Appl. Mater. Interfaces 8(12), 8184–8191 (2016)CrossRefGoogle Scholar
  23. 23.
    L.Z. Liu, J.Q. Xu, X.L. Wu, T.H. Li, J.C. Shen, P.K. Chu, Appl. Phys. Lett. 102, 031916–031919 (2013)CrossRefGoogle Scholar
  24. 24.
    F.H. Bo, Y.S. Yan, Z.P. Feng, W.H. Yuan, L.X. Lin, J.C. Mei, Z.Q. Sheng, C.Y. Hai, W.Z. Guo, Chin. Phys. Lett. 24(7), 2108–2111 (2007)CrossRefGoogle Scholar
  25. 25.
    D. Madhan, M. Parthibavarman, P. Rajkumar, M. Sangeetha, J. Mater. Sci. Mater. Electron. 26, 6823–6830 (2015)CrossRefGoogle Scholar
  26. 26.
    B. Sreedhar, Ch. Sumalatha, H. Yamada, K. Kojima, J. Noncryst. Solids 203, 172–175 (1996)CrossRefGoogle Scholar
  27. 27.
    J. Singh, J. Mater. Sci. Mater. Electron. 14, 171–186 (2003)CrossRefGoogle Scholar
  28. 28.
    R. Nasri, T. Larbi, M. Amlouk, M.F. Zid, J. Mater. Sci. Mater. Electron. 29, 18372–18379 (2018)CrossRefGoogle Scholar
  29. 29.
    J. Liu, R. Wei, J. Hu, L. Li, J. Li, J. Alloys Compd 580, 475–480 (2013)CrossRefGoogle Scholar
  30. 30.
    Z.Q. Li, X.T. Chen, Z.I. Xue, Sci. China Chem. 56, 443–450 (2013)CrossRefGoogle Scholar
  31. 31.
    J. Bi, L. Wu, Y. Zhang, Z. Li, J. Li, X. Fu, Appl. Catal. B 91, 135–143 (2009)CrossRefGoogle Scholar
  32. 32.
    J.V. Kumar, Sci. Rep. 6, 34149–34160 (2016)CrossRefGoogle Scholar
  33. 33.
    K. Nakamura, K. Shimokita, Y. Sakamoto, H. Hirano, Y. Michihiro, T. Moriga, Solid State Ion. 225, 538–541 (2012)CrossRefGoogle Scholar
  34. 34.
    Y. Ben Taher, A. Oueslati, N.K. Maaloul, K. Khirouni, M. Gargouri, Appl. Phys. A. 120, 1537–1543 (2015)CrossRefGoogle Scholar
  35. 35.
    Y.S. Song, N.I. Cho, M.H. Lee, B.Y. Kim, D.Y. Lee, J. Nanosci. Nanotechnol. 16, 1831–1833 (2016)CrossRefGoogle Scholar
  36. 36.
    M.N. Zulfiqar Ahmed, K.B. Chandrasekhar, A.A. Jahagirdar, H. Nagabhushana, B.M. Nagabhushana, Appl. Nanosci. 5, 961–968 (2015)CrossRefGoogle Scholar
  37. 37.
    T. Larbi, M.A. Amara, B. Ouni, M. Amlouk, Mater. Res. Bull. 95, 152–156 (2017)CrossRefGoogle Scholar
  38. 38.
    H. Jie, M. Jie, M. Jiahua, H. Hao, J. Rare Earths 32, 1126–1134 (2014)CrossRefGoogle Scholar
  39. 39.
    A. Sahmi, K. Bensadok, M. Trari, J. Photochem. Photobiol. A 349, 36–41 (2017)CrossRefGoogle Scholar
  40. 40.
  41. 41.
    T. Larbi, L. Ben Said, A. Ben Daly, B. Ouni, A. Labidi, M. Amlouk, J. Alloys Compd 686, 168–175 (2016)CrossRefGoogle Scholar
  42. 42.
    R. Singh, M. Kumar, H. Khajuria, L. Tashi, H.N. Sheikh, J. Chin. Chem. Soc. (2018).  https://doi.org/10.1002/jccs.201800317 Google Scholar
  43. 43.
    T. Larbi, K. Doll, M. Amlouk, Spectrochim. Acta A. 216, 117–124 (2019)CrossRefGoogle Scholar
  44. 44.
    M. Kumar, R. Singh, H. Khajuria, H.N. Sheikh, J. Mater. Sci. Mater. Electron. 28, 9423–9434 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Matériaux, Cristallochimie et Thermodynamique Appliquée, Faculté des Sciences de TunisUniversité de Tunis El ManarTunisTunisia
  2. 2.Unité de physique des dispositifs a semi-conducteursFaculté des Sciences de TunisTunisTunisia
  3. 3.Faculté des SciencesUniversité de GafsaGafsaTunisia

Personalised recommendations