Photo-stability of perovskite solar cells with Cu electrode

  • Abhishek K. Chauhan
  • Pankaj KumarEmail author


Towards higher stability of perovskite solar cells, Cu has been observed to be more suitable electrode material compared to conventional Al and Ag electrodes. The photo-stability of such devices has not been explored much in the literature, therefore we present here the investigation carried out towards the photo-stability of PSCs based on top Cu electrodes. The PSCs were prepared in normal geometry and stored in dark, under continuous illumination of a white LED lamp inside the laboratory and under direct sunlight outside the laboratory and tested as per the international summit on organic photovoltaics stability protocols. In dark storage the encapsulated solar cells exhibited highest stability but under illumination they exhibited degradation in their performance and the degradation was fastest in the direct sunlight. Degradation under illumination has been attributed to the photo-oxidation of the perovskite film. Cu has been observed to diffuse into and react with the underlying perovskite film and the ultraviolet and infrared contents in direct sunlight accelerated the photo-oxidation and chemical reactions between Cu and perovskite film. The chemical reactions of Cu electrode with perovskite constituents made it disappear after some time. These investigations suggest that Cu too is not a very stable electrode material for PSCs under natural operating conditions.



The financial support by CSIR-India through CSIR-YSA research Grant No. (OLP-163332) is greatly acknowledged. Thanks are due to Dr. N. Vijayan and Mr. M. Saravanan of CSIR-NPL for XRD measurements and recording the SEM images of the films respectively. AKC is also thankful to CSIR, India for providing him the financial support through its Senior Research Fellowship.


  1. 1.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photon. 8, 506 (2014)CrossRefGoogle Scholar
  2. 2.
    National Renewable Energy Laboratory (NREL) PV Efficiency Chart,
  3. 3.
    T. Duong, Y.L. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E.C. Wang, T.C. Kho, K.C. Fong, M. Stocks, E. Franklin, A. Blakers, N. Zin, K. McIntosh, W. Li, Y.B. Cheng, T.P. White, K. Weber, K. Catchpole, Adv. Energy Mater. 7(14), 1–11 (2017). CrossRefGoogle Scholar
  4. 4.
    K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen, J.P. Mailoa, D.P. McMeekin, R.L.Z. Hoye, C.D. Bailie, T. Leijtens, I.M. Peters, M.C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H.J. Snaith, T. Buonassisi, Z.C. Holman, S.F. Bent, M.D. McGehee, Nat. Energy 2, 17009 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Werner, L. Barraud, A. Walter, M. Brauninger, F. Sahli, D. Sacchetto, N. Tetreault, B.P. Salomon, S.J. Moon, C. Allebe, M. Despeisse, S. Nicolay, S. De Wolf, B. Niesen, C. Ballif, ACS Energy Lett. 1, 474 (2016)CrossRefGoogle Scholar
  6. 6.
    P. Loper, B. Niesen, S.J. Moon, S. Martin de Nicolas, J. Holovsky, Z. Remes, M. Ledinsky, F.J. Haug, J.H. Yum, S.D. Wolf, C. Ballif, IEEE J. Photovolt. 4, 1545 (2014)CrossRefGoogle Scholar
  7. 7.
    J.E. Bishop, T.J. Routledge, D.G. Lidzey, J. Phys. Chem. Lett. 9, 1977 (2018)CrossRefGoogle Scholar
  8. 8.
    Y. Deng, Q. Dong, C. Bi, Y. Yuan, J. Huang, Adv. Energy Mater. 6, 1600372 (2016)CrossRefGoogle Scholar
  9. 9.
    J.B. Whitaker, D.H. Kim, B.W. Larson, F. Zhang, J.J. Berry, M.F.A.M. van Hest, K. Zhu, Sustain. Energy Fuels 2, 2442 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Rong, Y. Ming, W. Ji, D. Li, A. Mei, Y. Hu, H. Han, J. Phys. Chem. Lett. 9, 2707 (2018)CrossRefGoogle Scholar
  11. 11.
    J.H. Kim, S.T. Williams, N. Cho, C.C. Chueh, A.K.Y. Jen, Adv. Energy Mater. 5, 1401229 (2015)CrossRefGoogle Scholar
  12. 12.
    T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, H.J. Snaith, Adv. Energy Mater. 5, 1500963 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Yang, B.D. Siempelkamp, D. Liu, T.L. Kelly, ACS Nano 9, 1955 (2015)CrossRefGoogle Scholar
  14. 14.
    D. Wang, M. Wright, N.K. Elumalai, A. Uddin, Sol. Energy Mater. Sol. Cells 147, 255 (2016)CrossRefGoogle Scholar
  15. 15.
    G. Niu, X. Guo, L. Wang, J. Mater. Chem. A 3, 8970 (2015)CrossRefGoogle Scholar
  16. 16.
    J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 14, 2584 (2014)CrossRefGoogle Scholar
  17. 17.
    B. Coning, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, H.G. Boyen, Adv. Energy Mater. 5, 1500477 (2015)CrossRefGoogle Scholar
  18. 18.
    I.C. Smith, E.T. Hoke, D.S. Ibarra, M.D. McGehee, H.I. Karunadasa, Angew Chem. Int. Ed. 53, 11232 (2014)CrossRefGoogle Scholar
  19. 19.
    I.C. Smith, E.T. Hoke, D.S. Ibarra, M.D. McGehee, H.I. Karunadasa, Angew Chem. Int. Ed. 126, 11414 (2014)CrossRefGoogle Scholar
  20. 20.
    Z. Yang, A. Rajagopal, S.B. Jo, C.C. Chueh, S. Williams, C.C. Huang, J.K. Katahara, H.W. Hillhouse, A.K.Y. Jen, Nano Lett. 16, 7739 (2016)CrossRefGoogle Scholar
  21. 21.
    D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, H.J. Snaith, Science 351, 151 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P.C. Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 9, 1989 (2016)CrossRefGoogle Scholar
  23. 23.
    X. Li, M.I. Dar, C. Yi, J. Luo, M. Tschumi, S.M. Zakeeruddin, M.K. Nazeeruddin, H. Han, M. Grätzel, Nat. Chem. 7, 703 (2015)CrossRefGoogle Scholar
  24. 24.
    A.K. Chauhan, P. Kumar, J. Phys. D Appl. Phys. 50, 325105 (2017)CrossRefGoogle Scholar
  25. 25.
    A.K. Chauhan, P. Kumar, S.R. Pal, S.K. Srivastava, S. Muthiah, J. Mater. Sci. 52, 10886 (2017)CrossRefGoogle Scholar
  26. 26.
    Y. Kato, L.K. Ono, M.V. Lee, S. Wang, S.R. Raga, Y. Qi, Adv. Mater. Interfaces 2, 1500195 (2015)CrossRefGoogle Scholar
  27. 27.
    E.M. Sanehira, B.J.T. de Villers, P. Schulz, M.O. Reese, S. Ferrere, K. Zhu, L.Y. Lin, J.J. Berry, J.M. Luther, ACS Energy Lett. 1, 38 (2016)CrossRefGoogle Scholar
  28. 28.
    J. You, L. Meng, T.B. Song, T.F. Guo, Y. Yang, W.H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Nat. Nanotechnol. 11, 75 (2016)CrossRefGoogle Scholar
  29. 29.
    J. You, L. Meng, T.B. Song, T.F. Guo, Y.M. Yang, W.H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Nat Nanotechnol 11, 75 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Zhao, X. Zheng, Y. Deng, T. Li, Y. Shao, A. Gruverman, J. Shield, J. Huang, Energy Environ. Sci. 9, 3650 (2016)CrossRefGoogle Scholar
  31. 31.
    R.W. Revie, H.H. Uhlig, Corrosion and Corrosion Control (Wiley, Hoboken, 2008)CrossRefGoogle Scholar
  32. 32.
    P. Kumar, Organic Solar Cells: Device Physics, Processing, Degradation and Prevention (CRC Press, New York, 2016)CrossRefGoogle Scholar
  33. 33.
    D.K. Chaudhary, P. Kumar, L. Kumar, Chem. Phys. Lett. 685, 210 (2017)CrossRefGoogle Scholar
  34. 34.
    C.H. Chiang, C.G. Wu, Nat. Photon. 10, 196 (2016)CrossRefGoogle Scholar
  35. 35.
    D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.P.C. Baena, J.D. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Sci. Adv. 2, e1501170 (2016)CrossRefGoogle Scholar
  36. 36.
    M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.H. Dahmen, F.D. Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, M.K. Nazeeruddin, Nat. Energy 1, 15017 (2016)CrossRefGoogle Scholar
  37. 37.
    D. Angmo, F.C. Krebs, Energy Technol. 3, 774 (2015)CrossRefGoogle Scholar
  38. 38.
    P. Vivo, J.K. Salunke, A. Priimagi, Materials 10, 1087 (2017)CrossRefGoogle Scholar
  39. 39.
    C.H. Chiang, C.G. Wu, Nat. Photon. 10, 196 (2016)CrossRefGoogle Scholar
  40. 40.
    G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Adv. Funct. Mater. 24, 151 (2014)CrossRefGoogle Scholar
  41. 41.
    F. Zabihi, MdRA Yazdi, M. Eslamian, Nanoscale Res. Lett. 11, 71 (2016)CrossRefGoogle Scholar
  42. 42.
    W. Zhou, Y. Zhao, C. Shi, H. Huang, J. Wei, R. Fu, K. Liu, D. Yu, Q. Zhao, J. Phys. Chem. C 120, 4759 (2016)CrossRefGoogle Scholar
  43. 43.
    P. Kumar, S.C. Jain, H. Kumar, S. Chand, V. Kumar, Appl. Phys. Lett. 94, 183505 (2009)CrossRefGoogle Scholar
  44. 44.
    M.V. Khenkin, K.M. Anoop, I.V. Fisher, S. Kolusheva, Y. Galagan, F. Di Giacomo, O. Vukovic, B.R. Patil, G. Sherafatipour, V. Turkovic, H.G. Rubahn, M. Madsen, A.V. Mazanik, E.A. Katz, A.C.S. Appl, Energy Mater. 1, 799 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Materials and Devices Metrology DivisionCSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia

Personalised recommendations