Double-exponential current–voltage (I–V) and negative capacitance (NC) behavior of Al/(CdSe-PVA)/p-Si/Al (MPS) structure

  • A. Büyükbaş-UluşanEmail author
  • A. Tataroğlu
  • Y. Azizian-Kalandaragh
  • M. Koşal


In this study, I–V and C–V characteristics of the Al/(CdSe-PVA)/p-Si/Al (MPS) structure have been investigated the by taking into account double-exponential I–V and NC behavior. The structural characterization of CdSe nanocrystals were analyzed by X-ray diffraction (XRD), scanning electron micros-copy (SEM), and energy dispersive X-ray (EDX) techniques. These results show that the prepared CdSe consists of spherical monodispersed nanocrystalites of about 200 nm; aggregated in the form of poly-dispersive nanoclusters of arbitrary shape with the size in the range of 150-300 nm and they are in good agreement with those estimated from the XRD pattern. The forward bias LnI–V plot of the MPS structure has two linear parts which are called low bias Region 1 (R1:0.25-0.65 V) and moderate bias Region 2 (R2:0.70-1.20 V). The ideality factor (n) and barrier height (BH:ΦB0) were found to be 9.38 and 0.61 eV for R1 and 6.51 and 0.65 eV for R2, respectively. The current conduction/transport mechanism (CCM/CTM) are also defined by forward I–VLn(I)–V and reverse bias In(IR)–VR1/2 plots. I–VLn(I)–V plot has also two linear parts which are also called (R1:-3.02/-0.29) and (R2:-0.10/1.60) obey I ~ Vm law. The slope (m) of them was found to be 1.63 and 4.57 which are corresponding to ohmic and trap-charge limited current (TCLC) mechanisms, respectively. Moreover, the value of ΦB(C–V) was found from the linear part of C−2-V plot as 0.79 eV which is higher than the obtained forward bias lnI–V plot due to the nature of measured method.



This study was supported by Gazi University Scientific Research Project. (Project Number: GU-BAP.05/2018-10).


  1. 1.
    Ç. Bilkan, A. Gümüş, Ş. Altındal, The source of negative capacitance and anomalous peak in the forward bias capacitance-voltage in Cr/p-si Schottky barrier diodes (SBDs). Mater. Sci. Semicond. Process. 39, 484–491 (2015)CrossRefGoogle Scholar
  2. 2.
    G. Ersöz, İ. Yücedağ, Y. Azizian-Kalandaragh, İ. Orak, Ş. Altındal, Investigation of electrical characteristics in Al/CdS-PVA/p-Si (MPS) structures using impedance spectroscopy method. IEEE Trans. Electron Devices 63, 2948–2955 (2016)CrossRefGoogle Scholar
  3. 3.
    M.S. Pratap Reddy, L. Jung-Hee, J. Ja-Soon, Frequency dependent series resistance and interface states in Au/bio-organic/n-GaN Schottky structures based on DNA biopolymer. Synth. Met. 185, 167–171 (2013)CrossRefGoogle Scholar
  4. 4.
    W.G. Osiris, A.A.M. Farag, I.S. Yahia, Extraction of the device parameters of Al/P3OT/ITO organic Schottky diode using J–V and C–V characteristics. Synth. Met. 161, 1079–1087 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Boughdachi, Y. Azizian Kalandaragh, Y. Badali, Ş. Altındal, Facile ultrasound-assisted and microwave-assisted methods for preparation of Bi2S3-PVA nanostructures: exploring their pertinent structural and optical properties and comparative studies on the electrical, properties of Au/(Bi2S3-PVA)/n-Si Schottky structure. J. Mater. Sci. 28, 17948–17960 (2017)Google Scholar
  6. 6.
    Ç.Ş. Güçlü, A.F. Özdemir, Ş. Altindal, Double exponential I–V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range. Appl. Phys. A 122, 1032 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Altındal Yerişkin, M. Balbaşı, İ. Orak, The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. J. Mater. Sci. 28, 14040–14048 (2017)Google Scholar
  8. 8.
    P.R. Sekhar Reddy, V. Janardhanam, I. Jyothi, S.H. Yuk, V.R. Reddy, J.C. Jeong, S.N. Lee, C.J. Choi, Modification of Schottky Barrier properties of Ti/p-type InP Schottky Diode by polyaniline (PANI) organic interlayer. J. Semicond. Technol. Sci. 16, 664–674 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Sharma, S.K. Tripathi, Frequency and voltage dependence of admittance characteristics of Al/Al2O3/PVA:n-ZnSe Schottky barrier diodes. Mater. Sci. Semicond. Process. 41, 155–161 (2016)CrossRefGoogle Scholar
  10. 10.
    A. Büyükbaş Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş. Altındal, On the conduction mechanisms of Au/(Cu2O-CuO-PVA)/n-Si (MPS) Schottky barrier diodes (SBDs) using current-voltage-temperature (I–V–T) characteristics. J. Mater. Sci. 29, 159–170 (2018)Google Scholar
  11. 11.
    M. Hussein Al-Dharo, H.E. Lapa, A. Kökce, Faruk ÖzdemirA, D. Ali Aldemir, Ş. Altındal, The investigation of current-conduction mechanisms (CCMs) in Au/(0.07Zn-PVA)/n-4H-SiC (MPS) Schottky diodes (SDs) by using (I–V-T) measurements’. Mater. Sci. Semicond. Process. 85, 98–105 (2018)CrossRefGoogle Scholar
  12. 12.
    C.V.S. Reddy, X. Han, Q.Y. Zhu, M.L.Q. Mai, W. Chen, Dielectric spectroscopy studies on (PVP + PVA) polyblend film. Microelectron. Eng. 83, 281–285 (2006)CrossRefGoogle Scholar
  13. 13.
    I.S. Yahia, G.B. Sakr, S.S. Shenouda, M. Fadel, S.S. Fouad, F. Yakuphanoglu, Negative capacitance of ZnGa2Se4/Si nano-heterojunction diode’. Appl. Phys. A 112, 275–282 (2013)CrossRefGoogle Scholar
  14. 14.
    E.E. Tanrıkulu, S. Demirezen, Ş. Altındal, İ. Uslu, On the anomalous peak and negative capacitance in the capacitance–voltage (C–V) plots of Al/(%7 Zn-PVA)/p-Si (MPS) structure. J. Mater. Sci. 29, 2890–2898 (2018)Google Scholar
  15. 15.
    K.S.A. Butcher, T.L. Tansley, D. Alexiev, An instrumental solution to the phenomenon of negative capacitances in semiconductors. Solid-State Electron. 39, 333–336 (1996)CrossRefGoogle Scholar
  16. 16.
    X.L. Huang, Thermally induced capacitance and electric field domains in GaAsAl 0.3Ga0.7As quantum well infrared photodetector. Solid-State Electron. 41, 845–850 (1997)CrossRefGoogle Scholar
  17. 17.
    C.H. Champness, W.R. Clark, Anomalous inductive effect in selenium Schottky diodes. Appl. Phys. Lett. 56, 1104–1106 (1998)CrossRefGoogle Scholar
  18. 18.
    B.K. Jones, J. Santana, M. McPherson, Negative capacitance effects in semiconductor diodes. Solid State Commun. 107, 47–50 (1998)CrossRefGoogle Scholar
  19. 19.
    Ş. Altındal, H. Uslu, The origin of anomalous peak and negative capacitance in the forward bias capacitance-voltage characteristics of Au/PVA/n-Si structures. J. Appl. Phys. 109, 074503 (2011)CrossRefGoogle Scholar
  20. 20.
    O. Vural, Y. Safak, A. Turut, S. Altındal, Temperature dependent negative capacitance behavior of Al/rhodamine-101/n-GaAs Schottky barrier diodes and Rs effects on the C–V and G/ω–V characteristics’. J. Alloys Compd. 513, 107–111 (2012)CrossRefGoogle Scholar
  21. 21.
    E. Arslan, Y. Safak, Ş. Altındal, Ö. Kelekçi, E. Özbay, Temperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AlN/GaN heterostructures. J. Non-Crys. Solids 356, 1006–1011 (2010)CrossRefGoogle Scholar
  22. 22.
    J.C. M’Peko, Effect of negative capacitances on high-temperature dielectric measurements at relatively low frequency. Appl. Phys. Lett. 71(25), 3730–3732 (1997)CrossRefGoogle Scholar
  23. 23.
    E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon Press, Oxford, 1988)Google Scholar
  24. 24.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (John Wiley & Sons, New York, 1981)Google Scholar
  25. 25.
    S. Demirezen, Ş. Altındal, İ. Uslu, Two diodes model and illumination effect on the forward and reverse bias I–V and C–V characteristics of Au/PVA (Bi-doped)/n-Si photodiode at room temperature. Curr. Appl. Phys. 13, 53–59 (2013)CrossRefGoogle Scholar
  26. 26.
    D.J. Ewing, L.M. Portter, Q. Wahab, X. Ma, T. Sudarshan, S.T. Tumakha, M. Gao, L.J. Brillson, Inhomogeneities in Ni∕4H-SiC Schottky barriers: Localized Fermi-level pinning by defect states. J. Appl. Phys. 101, 114514 (2007)CrossRefGoogle Scholar
  27. 27.
    B.J. Skromme, E. Luckowski, K. Moore, M. Bharnagar, C.E. Weitzel, T. Gehoski, D. Ganser, Electrical characteristics of schottky barriers on 4H-SiC: The effects of barrier height nonuniformity’. J. Electron. Mater. 29, 376–383 (2000)CrossRefGoogle Scholar
  28. 28.
    M. Saad, A. Kassis, Analysis of illumination-intensity-dependent j–V characteristics of ZnO/CdS/CuGaSe2 single crystal solar cells. Sol. Energy Mater. Sol. Cells 77, 415–422 (2003)CrossRefGoogle Scholar
  29. 29.
    S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)CrossRefGoogle Scholar
  30. 30.
    V.R. Reddy, Electrical properties of Au/polyvinylidene fluoride/n-InP Schottky diode with polymer interlayer. Thin Solid Films 556, 300–306 (2014)CrossRefGoogle Scholar
  31. 31.
    V. Rajagopal Reddy, V. Manjunath, V. Janardhanam, Y.H. Kıl, C.J. Cho, Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution-processed high-k BaTiO3 interlayer. J. Electron. Mater. 43, 3499–3907 (2014)CrossRefGoogle Scholar
  32. 32.
    A. Buyukbas-Ulusan, S. Altındal-Yerişkin, A. Tataroğlu, Forward and reverse bias current–Voltage (I–V) characteristics in the metal–ferroelectric–semiconductor (Au/SrTiO3/n-Si) structures at room temperature. J. Mater. Sci. 29, 16740–16746 (2018)Google Scholar
  33. 33.
    E. Marıl, A. Kaya, S. Koçyiğit, Ş. Altındal, On the analysis of the leakage current in Au/Ca3Co4Ga0.001Ox/n-Si structure in the temperature range of 80–340 K. Mater. Sci. Semicond. Process. 31, 256–261 (2015)CrossRefGoogle Scholar
  34. 34.
    B.K. Jones, J. Santana, M. McPherson, Negative capacitance effects in semiconductor diodes. Solid State Commun. 107, 47–50 (1988)CrossRefGoogle Scholar
  35. 35.
    M. Ershov, H.C. Liu, L. Li, M. Buchanan, Z.R. Wasilewski, A.K. Jonscher, Negative capacitance effect in semiconductor devices. IEEE Trans. Electron. Dev. 45, 2196–2206 (1998)CrossRefGoogle Scholar
  36. 36.
    C.Y. Zhu, L.F. Feng, C.D. Wang, H.X. Cong, G.Y. Zhang, Z.J. Yang, Z.Z. Chen, Negative capacitance in light emitting devices. Solid State Electron. 53, 324–328 (2009)CrossRefGoogle Scholar
  37. 37.
    K.S.A. Butcher, T.L. Tansley, D. Alexiev, An instrumental solution to the phenomenon of negative capacitances in semiconductors. Solid-State Electron. 39, 333–336 (1996)CrossRefGoogle Scholar
  38. 38.
    X.L. Huang, Y.G. Shin, K.Y. Lim, E.K. Suh, H.J. Lee, S.C. Shen, Thermally Induced Capacitance and Electric Field Domains in GaAs/Al0.3Gao. 7As Quantum Well Infrared Photodetector. Solid-State Electron. 41, 845–850 (1997)CrossRefGoogle Scholar
  39. 39.
    C.H. Champness, W.R. Clark, Anomalous inductive effect in selenium Schottky diodes. Appl. Phys. Lett. 56, 1104–1106 (1990)CrossRefGoogle Scholar
  40. 40.
    S.O. Tan, H.U. Tecimer, O. Çiçek, H. Tecimer, Ş. Altındal, Frequency dependent C–V and G/ω-V characteristics on the illumination-induced Au/ZnO/n-GaAs Schottky barrier diodes. J. Mater. Sci. 28, 4951–4957 (2017)Google Scholar
  41. 41.
    H.U. Tecimer, M.A. Alper, H. Tecimer, S.O. Tan, S. Altındal, Integration of Zn-doped organic polymer nanocomposites between metal semiconductor structure to reveal the electrical qualifications of the diodes. Polym. Bull. 75, 4257–4271 (2018)CrossRefGoogle Scholar
  42. 42.
    Demirezen S, Altındal Yerişkin S A detailed comparative study on electrical and photovoltaic characteristics of Al/p–Si photodiodes with coumarin–doped PVA interfacial layer: the effect of doping concentration. Polym. Bull. 10.1007/s00289-019-02704-3Google Scholar
  43. 43.
    S.O. Tan, Comparison of graphene and zinc dopant materials for organic polymer interfacial layer between metal semiconductor structure. IEEE Trans. Electron Devices 64, 5121–5127 (2017)CrossRefGoogle Scholar
  44. 44.
    O. Çiçek, S.O. Tan, H. Tecimer, S. Altındal, Role of graphene-doped organic/polymer nanocomposites on the electronic properties of Schottky junction structures for photocell applications. J. Electron. Mater. 47, 7134–7142 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Büyükbaş-Uluşan
    • 1
    Email author
  • A. Tataroğlu
    • 1
  • Y. Azizian-Kalandaragh
    • 2
  • M. Koşal
    • 3
  1. 1.Physics Department, Faculty of SciencesGazi UniversityAnkaraTurkey
  2. 2.Engineering Sciences DepartmentSabalan University of Advanced TechnologiesNaminIran
  3. 3.Physics Department, Faculty of SciencesHarran UniversityŞanlıurfaTurkey

Personalised recommendations