Advertisement

Highly porous NiMoO4 tailored onto amine functionalized CNT as advanced nanocomposite electrocatalyst for supercapacitor application

  • Gracita M. Tomboc
  • Hern KimEmail author
Article
  • 36 Downloads

Abstract

In this study, the NiMoO4-carbon nanotubes (NiMoO4-CNTs) nanocomposite with interesting vertical nanosheet architecture and hierarchical mesoporous surface was synthesized via a simple hydrothermal treatment, followed by annealing process. The NiMoO4 nanoparticles were chemically tailored onto amine functionalized CNT through the reactive –NH2 group available; this noble electrode design not only resulted to remarkably high specific surface area of 181.88 m2 g−1 with numerous numbers of active sites, but also ensured outstanding mechanical and chemical stability that helped retained 91.93% capacity retention even after 5000 continuous cycles at fast scan rate. The fabricated NiMoO4-CNT electrode press deposited onto nickel foam substrate obtained specific capacitance of 611.69 F g−1 and 20.42 W h kg−1 energy density at 1 A g−1 current density. Furthermore, the annealing temperature was a critical factor during the synthesis of the modified material as it has direct effect on the structure and crystal phase, as well as to the amount of decomposed CNT; thus, the effect of using low and high annealing temperature towards the electrochemical activity of the modified material was extensively examined. The synthesized materials were investigated by using thermo gravimetric analysis, X-ray diffraction, field emission scanning electron micrographs equipped with energy dispersive X-ray spectrometer, and Brunauer–Emmett–Teller.

Notes

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07048146) and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)—Grants funded by the Ministry of Trade, Industry and Energy (MOTIE) (No. 20174010201160).

References

  1. 1.
    U. Gulzar, S. Goriparti, E. Miele, T. Li, G. Maidecchi, A. Toma, F. De Angelis, R. Proietti, Next-generation textiles: from embedded supercapacitors to lithium ion batteries. J. Mater. Chem. A 4, 16771–16800 (2016)CrossRefGoogle Scholar
  2. 2.
    A. Sumboja, J. Liu, W.G. Zheng, Y. Zong, H. Zhang, Z. Liu, Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev. 47, 5919–5945 (2018)CrossRefGoogle Scholar
  3. 3.
    T. An, W. Cheng, Recent progress in stretchable supercapacitors. J. Mater. Chem. A 6, 15478–15494 (2018)CrossRefGoogle Scholar
  4. 4.
    J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei, C.M. Li, Puzzles and confusions in supercapacitor and battery: theory and solutions. J. Power Sources 401, 213–223 (2018)CrossRefGoogle Scholar
  5. 5.
    D. Rueda-Garcia, Z. Cab, R. Benages, D.P. Dubal, O. Ayyad, G. Pedro, Battery and supercapacitor materials in flow cells. Electrochemical energy storage in a LiFePO4/reduced graphene oxide aqueous nano fluid. Electrochim. Acta 281, 594–600 (2018)CrossRefGoogle Scholar
  6. 6.
    F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Latest advances in supercapacitors. Chem. Soc. Rev. 46, 6816–6854 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Wang, Y. Song, Y. Xia, Characterization and applications chemical functional materials. Chem. Soc. Rev. 45, 5925–5950 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Máca, M. Sedla, Supercapacitors: properties and applications. J. Energy Storage 17, 224–227 (2018)CrossRefGoogle Scholar
  9. 9.
    W. Raza, F. Ali, N. Raza, Y. Luo, K. Kim, J. Yang, Recent advancements in supercapacitor technology. Nano Energy 52, 441–473 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Yan, T. Wang, X. Li, H. Pang, H. Xue, Noble metal-based materials in high-performance supercapacitors. Inorg. Chem. Front. 4, 33–51 (2017)CrossRefGoogle Scholar
  11. 11.
    R. Xu, J. Lin, J. Wu, M. Huang, L. Fan, Z. Xu, Z. Song, A high-performance pseudocapacitive electrode material for supercapacitors based on the unique NiMoO4/NiO nanoflowers. Appl. Surf. Sci. 463, 721–731 (2019)CrossRefGoogle Scholar
  12. 12.
    A. Borenstein, O. Hanna, R. Attias, S. Luski, Carbon-based composite materials for supercapacitor electrodes: a review. J. Mater. Chem. 5, 12653–12672 (2017)CrossRefGoogle Scholar
  13. 13.
    T. Liu, F. Zhang, Y. Songa, Y. Li, Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. 5, 17705–17733 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Han, Y. Ge, Y. Chao, C. Wang, G.G. Wallace, Recent progress in 2D materials for flexible supercapacitors R. J. Energy Chem. 27, 57–72 (2018)CrossRefGoogle Scholar
  15. 15.
    S. Saha, P. Samanta, N. Chandra, T. Kuila, A review on the heterostructure nanomaterials for supercapacitor application. J. Energy Storage 17, 181–202 (2018)CrossRefGoogle Scholar
  16. 16.
    D. Chen, Q. Wang, G. Shen, Ternary oxide nanostructured materials for supercapacitors: a review. J. Mater. Chem. 3, 10158–10173 (2015)CrossRefGoogle Scholar
  17. 17.
    C. Wang, B. Tian, M. Wu, J. Wang, Revelation of the excellent intrinsic activity of MoS2/NiS/MoO3 nanowires for Hydrogen Evolution Reaction in alkaline Medium. ACS Appl. Mater. Interfaces 9, 7084–7090 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Liu, Y. Yu, B. Liu, L. Liu, H. Lv, A. Chen, PVP-assisted synthesis of nitrogen-doped hollow carbon spheres for supercapacitors. J. Alloys Compd 768, 42–48 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Eftekhari, L. Li, Y. Yang, Polyaniline supercapacitors. J. Power Sources 347, 86–107 (2017)CrossRefGoogle Scholar
  20. 20.
    G. Zhang, X. Xiao, B. Li, P. Gu, H. Xue, H. Pang, Transition metal oxides with one-dimensional/onedimensional-analogue nanostructures for advanced supercapacitors. J. Mater. Chem. 5, 8155–8186 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Kumar, R. Singh, H. Khajuria, H.N. Sheikh, Facile hydrothermal synthesis of nanocomposites of nitrogen doped graphene with metal molybdates (NG-MMoO4) (M = Mn, Co, and Ni) for enhanced photodegradation of methylene blue. J. Mater. Sci. Mater. Electron. 28, 9423–9434 (2017)CrossRefGoogle Scholar
  22. 22.
    C. Wei, Y. Huang, J. Yan, X. Chen, X. Zhang, Synthesis of hierarchical carbon sphere @ NiMoO4 composite materials for supercapacitor electrodes. Ceram. Int. 42, 15694–15700 (2016)CrossRefGoogle Scholar
  23. 23.
    Y. Huang, F. Cui, Y. Zhao, J. Lian, J. Bao, H. Li, Controlled growth of ultrathin NiMoO4 nanosheets on carbon nano fiber membrane as advanced electrodes for asymmetric supercapacitors. J. Alloys Compd 753, 176–185 (2018)CrossRefGoogle Scholar
  24. 24.
    T. Dong, M. Li, P. Wang, P. Yang, ScienceDirect synthesis of hierarchical tube-like yolk-shell Co3O4 @ NiMoO4 for enhanced supercapacitor performance. Int. J. Hydrog. Energy 43, 14569–14577 (2018)CrossRefGoogle Scholar
  25. 25.
    Y. Li, J. Jian, Y. Fan, H. Wang, L. Yu, G. Cheng, Facile one-pot synthesis of a NiMoO4/reduced graphene oxide composite as a pseudocapacitor with superior performance. RSC Adv. 6, 69627–69633 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Zheng, J. Xu, Y. Zhang, X. Yang, Y. Zhang, Y. Shang, Double-shelled hollow composites for asymmetric supercapacitor. N. J. Chem. 42, 150–160 (2017)CrossRefGoogle Scholar
  27. 27.
    H.A. Bandal, A.R. Jadhav, A.A. Chaugule, W. Chung, H. Kim, Fe2O3 hollow nanorods/CNT composites as an efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 222, 1316–1325 (2016)CrossRefGoogle Scholar
  28. 28.
    F.O. Agyemang, H. Kim, Electrospun ZnFe2O4-based nanofiber composites with enhanced supercapacitive properties. Mater. Sci. Eng. B 211, 141–148 (2016)CrossRefGoogle Scholar
  29. 29.
    M.C. Liu, L. Kang, L.B. Kong, C. Lu, X.J. Ma, X.M. Li, Y.C. Luo, Electrode material for supercapacitors. RSC Adv. 3, 6472–6478 (2013)CrossRefGoogle Scholar
  30. 30.
    S.E. Moosavifard, J. Shamsi, S. Kadkhodazade, 3D ordered nanoporous NiMoO4 for high performance supercapacitor electrode materials. RSC Adv. 4, 52555–52561 (2014)CrossRefGoogle Scholar
  31. 31.
    H.A. Bandal, A.R. Jadhav, H. Kim, Cobalt impregnated magnetite-multiwalled carbon nanotube nanocomposite as magnetically separable efficient catalyst for hydrogen generation by NaBH4 hydrolysis. J. Alloys Compd 699, 1057–1067 (2017)CrossRefGoogle Scholar
  32. 32.
    A. Rahimpour, M. Jahanshahi, S. Khalili, A. Mollahosseini, A. Zirepour, B. Rajaeian, Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286, 99–107 (2012)CrossRefGoogle Scholar
  33. 33.
    G. Zeng, Y. He, Z. Yu, X. Yang, L. Zhang, Preparation of novel high copper ions carbon nanotube. J. Chem. Technol. Biotechnol. 91, 2322–2330 (2016)CrossRefGoogle Scholar
  34. 34.
    A.R. Jadhav, J.M.C. Puguan, H. Kim, Microwave-assisted synthesis of a stainless steel mesh-supported Co3O4 microrod array as a highly efficient catalyst for Electrochemical Water Oxidation. ACS Sustain. Chem. Eng. 5, 11069–11079 (2017)CrossRefGoogle Scholar
  35. 35.
    A.R. Jadhav, H.A. Bandal, A.A. Chaugule, H. Kim, Diethylenetriamine assisted synthesis of mesoporous Co and Ni–Co spinel oxides as an electrocatalysts for methanol and water oxidation. Electrochim. Acta 240, 277–287 (2017)CrossRefGoogle Scholar
  36. 36.
    B. Wang, S. Li, X. Wu, W. Tian, J. Liu, M. Yu, Mesoporous nanosheets on three-dimensional storage. J. Mater. Chem. A 3, 13691–13698 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Meng, J. Fu, X. Yang, M. Wei, S. Liang, Efficient MMoO4 (M = Co, Ni) carbon cloth electrodes for water oxidation. Inorg. Chem. Front. 4, 1791–1797 (2017)CrossRefGoogle Scholar
  38. 38.
    S.H. Kazemi, F. Bahmani, H. Kazemi, M.A. Kiani, Binder-free electrodes of NiMoO4/graphene oxide nanosheets: synthesis, characterization and supercapacitive behavior. RSC Adv. 6, 111170–111181 (2016)CrossRefGoogle Scholar
  39. 39.
    B. Wang, S. Li, X. Wu, J. Liu, W. Tian, Anodes for high-performance lithium storage. Phys. Chem. Chem. Phys. 18, 908–915 (2015)CrossRefGoogle Scholar
  40. 40.
    C. Lv, Z. Huang, Q. Yang, G. Wei, Ultrafast synthesis of molybdenum carbide nanoparticles for efficient hydrogen generation. J. Mater. Chem. A 5, 22805–22812 (2017)CrossRefGoogle Scholar
  41. 41.
    G.M. Tomboc, A.H. Tamboli, H. Kim, Synthesis of Co3O4 macrocubes catalyst using novel chitosan/urea template for hydrogen generation from sodium borohydride. Energy 121, 238–245 (2017)CrossRefGoogle Scholar
  42. 42.
    Z. Yin, Y. Chen, Y. Zhao, C. Li, C. Zhu, X. Zhang, Supercapacitors and the oxygen evolution. J. Mater. Chem. A 3, 22750–22758 (2015)CrossRefGoogle Scholar
  43. 43.
    G.M. Tomboc, H.S. Jadhav, H. Kim, PVP assisted morphology-controlled synthesis of hierarchical mesoporous ZnCo2O4 nanoparticles for high-performance pseudocapacitor. Chem. Eng. J. 308, 202–213 (2017)CrossRefGoogle Scholar
  44. 44.
    K. Xiao, L. Xia, G. Liu, S. Wang, L. Ding, H. Wang, Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage. J. Mater. Chem. A 3, 6128–6135 (2015)CrossRefGoogle Scholar
  45. 45.
    S. Zhang, B. Yin, C. Liu, Z. Wang, D. Gu, NiMoO4 nanowire arrays and carbon nanotubes film as advanced electrodes for high-performance supercapacitor. Appl. Surf. Sci. 458, 478–488 (2018)CrossRefGoogle Scholar
  46. 46.
    C. Wang, Y. Xi, C. Hu, S. Dai, M. Wang, L. Cheng, β-NiMoO4 nanowire arrays grown on carbon cloth for 3D solid asymmetry supercapacitors. RSC Adv. 5, 107098–107104 (2015)CrossRefGoogle Scholar
  47. 47.
    Z. Gu, H. Nan, B. Geng, X. Zhang, Three-dimensional NiCo2O4@NiMoO4 core/shell nanowires for electrochemical energy storage. J. Mater. Chem. A 3, 12069–12075 (2015)CrossRefGoogle Scholar
  48. 48.
    F. Agyemang, G.M. Tomboc, S. Kwofie, H. Kim, Electrospun carbon nano fiber-carbon nanotubes coated polyaniline composites with improved electrochemical properties for supercapacitors. Electrochim. Acta 259, 1110–1119 (2018)CrossRefGoogle Scholar
  49. 49.
    G.M. Tomboc, F. Agyemang, H. Kim, Improved electrocatalytic oxygen evolution reaction properties using PVP modified direct growth Co-based metal oxides electrocatalysts on nickel foam. Electrochim. Acta 263, 362–372 (2018)CrossRefGoogle Scholar
  50. 50.
    G.M. Tomboc, M.W. Abebe, A.F. Baye, H. Kim, Utilization of the superior properties of highly mesoporous PVP modified NiCo2O4 with accessible 3D nanostructure and flower-like morphology towards electrochemical methanol oxidation reaction. J. Energy Chem. 29, 136–146 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Energy Science and Technology, Smart Living Innovation Technology CenterMyongji UniversityYonginRepublic of Korea

Personalised recommendations