Advertisement

Evidence of compositional fluctuation induced relaxor antiferroelectric to antiferroelectric ordering in Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 based lead free ferroelectric

  • Lagen Kumar Pradhan
  • Rabichandra Pandey
  • Sunil Kumar
  • Suman Kumari
  • Manoranjan KarEmail author
Article
  • 29 Downloads

Abstract

The high temperature electrical phase transitions of (1 − x) Bi0.5Na0.5TiO3–(x) Bi0.5K0.5TiO3 (x = 0.10, 0.15, 0.20, 0.25, 0.30 and 0.35) relaxor ferroelectrics have been investigated by employing the dielectric spectroscopy technique. The Rietveld refinement of the XRD patterns reveals the increase of the lattice distortion (c/a) from 1.001 to 1.006 in the tetragonal crystal symmetry (P4mm) with the increase of the BKT (x = 0.10, 0.15, 0.20, 0.25, 0.30 and 0.35) mole fraction. The different bonds vibration (Bi3+/Na+/K+–O and Ti4+–O) related to phonon modes have been studied by analyzing the Raman spectra. The relaxor antiferroelectric ordering temperature (Td: depolarization temperature) of Bi0.5Na0.5TiO3 (BNT) reduce from ~ 200 to ~ 91 °C with the increase of the BKT mole fraction. This observation is well correlated to the formation of polar nanoregions (PNRs) due to the compositional fluctuation in the local crystal structure. Also, Td varies with the frequency of the applied electric. It suggests the presence of the PNRs and, subsequently exhibits the relaxor ferroelectric behavior. The activation energy to activate the PNRs reduces from 2.573 to 2.383 meV with the increase of the BKT mole fraction in the solid solutions. Reduction in remanent electrical polarization and the electrical coercive field in temperature dependent ferroelectric hysteresis loops suggest the relaxor antiferroelectric behavior of the solid solutions (x ≥ 0.15) near the depolarization temperature.

Notes

References

  1. 1.
    O.L. Serhiy, R.E. Eitel, Sci. Technol. Adv. Mater. 11, 044302 (2010)CrossRefGoogle Scholar
  2. 2.
    J. Rodel, J.K.G. Webber, R. Dittmer, J. Wook, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659–1681 (2015)CrossRefGoogle Scholar
  3. 3.
    G.A. Smolensky, V.A. Isupov, A.I. Agranovskaya, N.N. Krainic, Sov. Phys. Solid State 2, 2651 (1961)Google Scholar
  4. 4.
    H. Nagta, M. Yoshida, Y. Makiuchi, T. Takenaka, Jpn. J. Appl. Phys. 42, 7401–7403 (2003)CrossRefGoogle Scholar
  5. 5.
    Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Appl. Phys. Lett. 96, 202901 (2010)CrossRefGoogle Scholar
  6. 6.
    F. Wang, M. Xu, Y. Tang, T. Wang, W. Shi, C.M. Leung, J. Am. Ceram. Soc. 95(6), 1955–1959 (2012)CrossRefGoogle Scholar
  7. 7.
    L. Liu, M. Knapp, H. Ehrenberg, L. Fang, L.A. Schmitt, H. Fuess, M. Hoelzel, M. Hinterstein, J. Appl. Cryst. 49, 574–584 (2016)CrossRefGoogle Scholar
  8. 8.
    S. Sayyed, S.A. Acharya, P. Kautkara, V. Sathe, RSC Adv. 5, 50644 (2015)CrossRefGoogle Scholar
  9. 9.
    D. Lin, C. Xu, Q. Zheng, Y. Wei, D. Gao, J. Mater. Sci.: Mater. Electron. 20, 393–397 (2009)Google Scholar
  10. 10.
    K.N. Pham, A. Hussain, C.W. Ahn, I.W. Kim, S.J. Jeong, J.-S. Lee, Mater. Lett. 64(20), 2219–2222 (2010)CrossRefGoogle Scholar
  11. 11.
    S.K. Mishra, D. Pandey, A.P. Singh, Appl. Phys. Lett. 69, 1707 (1996)CrossRefGoogle Scholar
  12. 12.
    P. Singh, S.K. Mishra, R. Lal, D. Pandey, Ferroelectrics 163, 103–113 (1995)CrossRefGoogle Scholar
  13. 13.
    K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45, 4493–4496 (2006)CrossRefGoogle Scholar
  14. 14.
    E. Dulkin, J. Suchaniczb, A. Kania, M. Roth, Mater. Res. 21(3), e20170953 (2018)Google Scholar
  15. 15.
    D.S. Keeble, E.R. Barney, D.A. Keen, M.G. Tucker, J. Kreisel, P.A. Thomas, Bifurcated Adv. Funct. Mater. 23, 185–190 (2012)CrossRefGoogle Scholar
  16. 16.
    A. Mahajan, H. Zhang, J. Wu, E.V. Ramana, M.J. Reece, H. Yan, J. Phys. Chem. C 121, 5709–5718 (2017)CrossRefGoogle Scholar
  17. 17.
    G. Smolenskii, V. Isupov, A. Agranovskaya, N. Krainik, Sov. Phys. Solid State 2, 2651–2654 (1996)Google Scholar
  18. 18.
    Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 105, 084112 (2009)CrossRefGoogle Scholar
  19. 19.
    G.O. Jones, P.A. Thomas, Acta Crystallogr. Sect. B 58, 168–178 (2002)CrossRefGoogle Scholar
  20. 20.
    E. Aksel, J.S. Forrester, B. Kowalski, J.L. Jones, P.A. Thomas, Appl. Phys. Lett. 99, 222901 (2011)CrossRefGoogle Scholar
  21. 21.
    J.A. Zvirgzds, P.P. Kapostin, J.V. Zvirgzde, T.V. Kruzina, Ferroelectrics 40, 75–77 (1982)CrossRefGoogle Scholar
  22. 22.
    J. Suchanicz, J.K. Wapulinski, Ferroelectrics 165, 249–253 (1995)CrossRefGoogle Scholar
  23. 23.
    I.P. Pronin, P.P. Syrnikov, V.A. Isupov, V.M. Egorov, N.V. Zaitseva, Ferroelectrics 25, 395–397 (1980)CrossRefGoogle Scholar
  24. 24.
    K. Sakata, Y. Masuda, Ferroelectrics 7, 347–349 (1974)CrossRefGoogle Scholar
  25. 25.
    M.S. Zhang, J. Scott, J. Zvirgzds, Ferroelectr. Lett. Sect. 6, 147–152 (1986)CrossRefGoogle Scholar
  26. 26.
    V. Dorcet, G. Trolliard, P. Boullay, J. Magn. Magn. Mater. 321, 1758–1761 (2009)CrossRefGoogle Scholar
  27. 27.
    V. Dorcet, G. Trolliard, P. Boullay, Chem. Mater. 20, 5061–5073 (2008)CrossRefGoogle Scholar
  28. 28.
    G. Trolliard, V. Dorcet, Chem. Mater. 20, 5074–5082 (2008)CrossRefGoogle Scholar
  29. 29.
    C.K. In, G. Rujijanagul, F.Y. Zhu, S.J. Milne, Appl. Phy. Lett. 100, 202904 (2012)CrossRefGoogle Scholar
  30. 30.
    V. Polinger, I.B. Bersuker, Phys. Rev. B 98, 214102 (2018)CrossRefGoogle Scholar
  31. 31.
    L.K. Pradhan, R. Pandey, S. Kumar, S. Supriya, M. Kar, J. Phys. D 51, 375301 (2018)CrossRefGoogle Scholar
  32. 32.
    J.D.S. Guerra, A.P. Barranco, F.C. Pinar, Y.M. Gonzalez, Phys. B 525, 114–118 (2017)CrossRefGoogle Scholar
  33. 33.
    G.W. Stinton, J.S.O. Evans, J. Appl. Cryst. 40, 87–95 (2007)CrossRefGoogle Scholar
  34. 34.
    K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45(5B), 4493–4496 (2006)CrossRefGoogle Scholar
  35. 35.
    B. Guttler, B. Mihailovab, R. Stoscha, U. Bismayerc, M. Gospodinov, J. Mol. Struct. 661–662, 469–479 (2003)CrossRefGoogle Scholar
  36. 36.
    A.P.B. Selvadurai, V. Pazhnivelu, B.K. Vasanth, C. Jagadeeshwaran, R. Murugaraj, J. Mater. Sci.: Mater. Electron. 26, 7655–7665 (2015)Google Scholar
  37. 37.
    D.A.F. Benavide, A.I.G. Perez, A.M.B. Castro, M.T.A. Ayala, B.M. Murguia, J.M. Saldana, Materials 11, 36 (2018)Google Scholar
  38. 38.
    D.E.J. Ruth, B. Sundarakannan, Ceram. Int. 42, 4775–4778 (2016)CrossRefGoogle Scholar
  39. 39.
    A.P. Barranco, O.G. Zaldívar, F.C. Pinar, R.L. Noda, J.F. Betancourt, Phys. Status Solidi B 242(9), 1864–1867 (2005)CrossRefGoogle Scholar
  40. 40.
    X. Yao, Z.L. Chen, L.E. Cross, J. Appl. Phys. 54, 3394 (1983)CrossRefGoogle Scholar
  41. 41.
    E. Cross, Ferroelectrics 76, 241 (1987)CrossRefGoogle Scholar
  42. 42.
    D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916 (1990)CrossRefGoogle Scholar
  43. 43.
    T.F. Zhang, X.G. Tang, Q.X. Liu, S.G. Lu, Y.P. Jiang, X.X. Huang, Q.F. Zhou, AIP Adv. 4, 107141 (2014)CrossRefGoogle Scholar
  44. 44.
    K. Sakata, Y. Masuda, Ferroelectrics 7, 347 (1974)CrossRefGoogle Scholar
  45. 45.
    J. Suchanicz, W.S. Ptak, Ferroelectrics Lett. 12, 71 (1990)CrossRefGoogle Scholar
  46. 46.
    A. Ullah, A. Ullah, W. Kim, D.S. Lee, S.J. Jeong, C.W. Ahn, J. Am. Ceram. Soc. 97(8), 2471–2478 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lagen Kumar Pradhan
    • 1
  • Rabichandra Pandey
    • 1
  • Sunil Kumar
    • 1
  • Suman Kumari
    • 1
  • Manoranjan Kar
    • 1
    Email author
  1. 1.Department of PhysicsIndian Institute of Technology PatnaPatnaIndia

Personalised recommendations