Impact of Mn3+ substitution on magnetization and electric polarization behavior in geometry frustrated CuFe1−xMnxO2

  • Guiling Xiao
  • Zhengcai XiaEmail author
  • Xiaoxing Zhang
  • Yujie Song
  • Sha Huang
  • Feng Yang
  • Dequan Jiang
  • Han Deng
  • Zhongwen Ouyang
  • Liran Shi


The Mn3+ doped single crystal samples CuFe1−xMnxO2 with x = 0.01, 0.03 and 0.05 were synthetic by floating zone method, and their magnetization and electric polarization were measured with static and pulsed high magnetic field up to 50 T in the temperature ranging from 2 to 300 K. A series of field-induced magnetic phase transitions and electric polarization, which show obviously anisotropy, were observed in all the doped samples, and their critical fields were directly related to the Mn3+ doping level. The pulsed high magnetic dielectric polarization measurements show that, in the ferroelectric incommensurate phase, the spontaneous electric polarization region is enhanced by the Mn3+ dopant. The impact of the Mn3+ substitution on magnetic and electric polarization behaviors may associate with the partial release of spin frustration in the CuFeO2. Based on the experimental results, the impact of Mn3+ doping on the magnetization and electric polarization behavior as well as their anisotropy are investigated and a detailed magnetic diagram are assumed.



This work was supported in part by the National Key R&D Program of China (Grant No. 2016YFA0401003), the National Natural Science Foundation of China (Grant Nos. 11674115, 51861135104, 11104091, 11474110 and 11747014), and the Fundamental Research Funds for the Central Universities (Grant No. 2018KFYXKJC010).


  1. 1.
    W.W. Mao, W. Chen, X.F. Wang, Y.Y. Zhu, Y.H. Ma, H.T. Xue, L. Chu, J.P. Yang, X.A. Li, W. Huang, Influence of Eu and Sr co-substitution on multiferroic properties of BiFeO3. Ceram. Int. 42, 12842 (2016)Google Scholar
  2. 2.
    W. Mao, Q. Yao, Y. Fan, Y. Wang, X. Wang, Y. Pu, X. Li, Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping. J. Alloys Compd. 784, 117 (2019)CrossRefGoogle Scholar
  3. 3.
    G. Huang, G. Zhang, Z. Gao, J. Cao, D. Li, H. Yun, T. Zeng, Enhanced visible-light-driven photocatalytic activity of BiFeO3 via electric-field control of spontaneous polarization. J. Alloys Compd. 783, 943 (2019)CrossRefGoogle Scholar
  4. 4.
    P. Bai, Y. Zeng, J. Han, Y. Wei, M. Li, Influence of Al doping on structural, dielectric, and ferroelectric properties of multiferroic BiFeO3 ceramics. Ceram. Int. 45, 7730 (2019)CrossRefGoogle Scholar
  5. 5.
    M. Abushad, W. Khan, S. Naseem, S. Husain, M. Nadeem, A. Ansari, Influence of Mn doping on microstructure, optical, dielectric and magnetic properties of BiFeO3 nanoceramics synthesized via sol–gel method. Ceram. Int. 45, 7437 (2019)CrossRefGoogle Scholar
  6. 6.
    T. Rojac, M. Makarovic, J. Walker, H. Ursic, D. Damjanovic, T. Kos, Piezoelectric response of BiFeO3 ceramics at elevated temperatures. Appl. Phys. Lett. 109, 042904 (2016)CrossRefGoogle Scholar
  7. 7.
    H. Shen, Z. Cheng, F. Hong, J. Xu, S. Yuan, S. Cao, X. Wang, Magnetic field induced discontinuous spin reorientation in ErFeO3 single crystal. Appl. Phys. Lett. 103, 192404 (2013)CrossRefGoogle Scholar
  8. 8.
    B. Klobes, M. Herlitschke, K.Z. Rushchanskii, H.C. Wille, T.T.A. Lummen, P.H.M. van Loosdrecht, A.A. Nugroho, R.P. Hermann, Anisotropic lattice dynamics and intermediate-phase magnetism in delafossite CuFeO2. Phys. Rev. B 92, 014304 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Seki, Y. Yamasaki, Y. Shiomi, S. Iguchi, Y. Onose, Y. Tokura, Impurity-doping-induced ferroelectricity in the frustrated antiferromagnet CuFeO2. Phys. Rev. B 75, 100403 (2007)CrossRefGoogle Scholar
  10. 10.
    M. Lalanne, P. Demont, A. Barnabé, Ac conductivity and dielectric properties of CuFe1−xCrxO2 : Mg delafossite. J. Phys. D 44, 185401 (2011)CrossRefGoogle Scholar
  11. 11.
    N.K. Setsuo Mitsuda, T. Uno, M. Mase, Partially disordered phase in frustrated triangular lattice antiferromagnet CuFeO2. J. Phys. Soc. Jpn 67, 4023 (1998)Google Scholar
  12. 12.
    T. Elkhoun, M. Amami, E.K. Hlil, A.B. Salah, Effect of spin dilution on the magnetic state of delafossite CuFeO2 with an S = 5/2 antiferromagnetic triangular sublattice. J. Supercond. Nov. Magn. 28, 1439 (2015)CrossRefGoogle Scholar
  13. 13.
    T.A. Yoshitami Ajiro, T. Takagi, M. Mekata, H.R. Katori, T. Goto, High-field magnetization process in the triangular lattice antiferromagnet CuFeO2 up to 100 T. Physica B 201, 71 (1994)CrossRefGoogle Scholar
  14. 14.
    H. Katsura, N. Nagaosa, A.V. Balatsky, Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Mitsudaa, T. Unoa, M. Masea, H. Nojirib, K. Takahashib, M. Motokawab, M. Araic, Neutron diffraction study of triangular lattice antiferromagnet. J. Phys. Chem. Solids 60, 1249 (1999)CrossRefGoogle Scholar
  16. 16.
    M.M. Setsuo Mitsuda, K. Prokes, H. Kitazawa, H. Aruga Katori, Field-induced magnetic phase transitions in a triangular lattice antiferromagnet CuFeO2 up to 14.5T. J. Phys. Soc. Jpn 69, 3513 (2000)CrossRefGoogle Scholar
  17. 17.
    G. Quirion, M.L. Plumer, O.A. Petrenko, G. Balakrishnan, C. Proust, Magnetic phase diagram of magnetoelectric CuFeO2 in high magnetic fields. Phys. Rev. B 80, 064420 (2009)CrossRefGoogle Scholar
  18. 18.
    D. Xiong, Q. Zhang, S.K. Verma, X.Q. Bao, H. Li, X. Zhao, Crystal structural, optical properties and mott-schottky plots of p-type Ca doped CuFeO2 nanoplates. Mater. Res. Bull. 83, 141 (2016)CrossRefGoogle Scholar
  19. 19.
    J.D. Song, J.C. Wu, X. Rao, S.J. Li, Z.Y. Zhao, X.G. Liu, X. Zhao, X.F. Sun, Single crystal growth of CuFe1−xGaxO2 by the optical floating-zone method. J. Cryst. Growth 446, 79 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Hongaromkij, C. Rudradawong, C. Ruttanapun, Effect of Ga-substitution for Fe sites of delafossite CuFe1−xGaxO2 (x = 0.0, 0.1, 0.3, 0.5) on thermal conductivity. J. Mater. Sci. Mater. Electron. 27, 6438 (2016)CrossRefGoogle Scholar
  21. 21.
    T. Elkhouni, M. Amami, C.V. Colin, A.B. Salah, Structural and magnetoelectric interactions of (Ca, Mg)-doped polycrystalline multiferroic CuFeO2. Mater. Res. Bull. 53, 151 (2014)CrossRefGoogle Scholar
  22. 22.
    N. Terada, T. Nakajima, S. Mitsuda, H. Kitazawa, K. Kaneko, N. Metoki, Ga-substitution-induced single ferroelectric phase in multiferroic CuFeO2. Phys. Rev. B 78, 014101 (2008)CrossRefGoogle Scholar
  23. 23.
    L. Naka-in, T. Kamwanna, P. Srepusharawoot, S. Pinitsoontorn, V. Amornkitbamrung, Effects of Ge substitution on the structural and physical properties of CuFeO2 delafossite oxide. Jpn. J. Appl. Phys. 54, 04DH10 (2015)CrossRefGoogle Scholar
  24. 24.
    L.R. Shi, Z.C. Xia, Z. Jin, M. Wei, J.W. Huang, B.R. Chen, L.X. Xiao, H.K. Zuo, Z.W. Ouyang, High magnetic field induced spin flip/flop behavior and magnetic phase diagram of CuFe1−xGaxO2. J. Solid State Chem. 219, 152 (2014)CrossRefGoogle Scholar
  25. 25.
    N. Terada, S. Mitsuda, T. Fujii, K.I. Soejima, I. Doi, H. Aruga Katori, Y. Noda, Magnetic phase diagram of the triangular lattice antiferromagnet CuFe1−xAlxO2. J. Phys. Soc. Jpn 74, 2604 (2005)CrossRefGoogle Scholar
  26. 26.
    T. Nakajima, S. Mitsuda, S. Kanetsuki, K. Prokes, A. Podlesnyak, H. Kimura, Y. Noda, Spin noncollinearlity in multiferroic phase of triangular lattice antiferromagnet CuFe1−xAlxO2. J. Phys. Soc. Jpn 76, 043709 (2007)CrossRefGoogle Scholar
  27. 27.
    H. Mitamura, S. Mitsuda, S. Kanetsuki, H. Aruga Katori, T. Sakakibara, K. Kindo, Dielectric polarization measurements on the antiferromagnetic triangular lattice system CuFeO2 in pulsed high magnetic fields. J. Phys. Soc. Jpn 76, 094709 (2007)CrossRefGoogle Scholar
  28. 28.
    K. Hayashi, R. Fukatsu, T. Nozaki, Y. Miyazaki, T. Kajitani, Structural, magnetic, and ferroelectric properties of CuFe1−xMnxO2. Phys. Rev. B 87, 064418 (2013)CrossRefGoogle Scholar
  29. 29.
    N. Xia, L. Shi, Z. Xia, B. Chen, Z. Jin, Y. Wang, Z. Ouyang, H. Zuo, Y. Shen, Dynamic behavior of magnetoelectric coupling of CuFeO2 induced by a high magnetic field. J. Appl. Phys. 115, 114107 (2014)CrossRefGoogle Scholar
  30. 30.
    H.K. Zuo, L.R. Shi, Z.C. Xia, J.W. Huang, B.R. Chen, Z. Jin, M. Wei, Z.W. Ouyang, G. Cheng, The magnetic anisotropy and complete phase diagram of CuFeO2 measured in a pulsed high magnetic field up to 75T. Chin. Phys. Lett. 32, 047502 (2015)CrossRefGoogle Scholar
  31. 31.
    F. Ye, Y. Ren, Q. Huang, J.A. Fernandez-Baca, P. Dai, J.W. Lynn, T. Kimura, Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. Phys. Rev. B 73, 220404 (2006)CrossRefGoogle Scholar
  32. 32.
    L. Shi, Z. Xia, M. Wei, J. Huang, B. Chen, Z. Long, C. Shang, Ouyang Z and Xia N The enhanced spontaneous dielectric polarization in Ga doped CuFeO2. J. Appl. Phys. 116, 173907 (2014)CrossRefGoogle Scholar
  33. 33.
    T. Chatterji, B. Ouladdiaf, P. Mandal, B. Bandyopadhyay, B. Ghosh, Jahn-Teller transition in La1−xSrxMnO3 in the low-doping region (0 < x < 0.1). Phys. Rev. B 66, 054403 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Guiling Xiao
    • 1
  • Zhengcai Xia
    • 1
    Email author
  • Xiaoxing Zhang
    • 1
  • Yujie Song
    • 1
  • Sha Huang
    • 1
  • Feng Yang
    • 1
  • Dequan Jiang
    • 1
  • Han Deng
    • 1
  • Zhongwen Ouyang
    • 1
  • Liran Shi
    • 2
  1. 1.Wuhan National High Magnetic Field Center & School of PhysicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Physics and Electrical EngineeringAnyang Normal UniversityAnyangChina

Personalised recommendations