Advertisement

Effect of structural disorder on the electronic and phononic properties of Hf doped BaTiO3

  • Aanchal Sati
  • Vikash Mishra
  • Anil Kumar
  • M. Kamal Warshi
  • Archna Sagdeo
  • Rajesh Kumar
  • P. R. SagdeoEmail author
Article
  • 58 Downloads

Abstract

The classical ferroelectric material BaTiO3 has been doped with large cation i.e., Hf at Ti site in order to understand the effect of structural disorder in electronic and phononic state. The Raman spectroscopy measurement on these samples indicates increase in the structural disorder with Hf doping. The detail analysis of the Raman spectroscopy data clearly suggests the appearance of new Raman mode at ~ 780 cm−1 and the presence of an asymmetry in almost all Raman modes. The appearance of new Raman mode has been attributed due to the structural disorder induced phonon modes; and this is further confirmed using laser irradiation studies. Additionally, it has been observed that the intensity of this new phonon mode increases systematically with Hf doping; indicating increase in the phononic disorder. It has been observed that the line shape Raman phonon modes show significant asymmetry and this asymmetry along with the full peak width at half maxima (FWHM) of Raman phonon mode shows systematic variation with Hf doping. The observed asymmetric Raman line profile has been analysed through Fano model of electron–phonon coupling which suggests an increase in the electron–phonon coupling with Hf doping. In order to get further insight on increase in the electron–phonon coupling near band edge optical absorption spectroscopy measurements has been carried out and value of electronic disorder in the form of Urbach energy has been estimated and the same is observed to scale with Hf doping. Thus, the systematic increase in the intensity of disorder phonon mode and that of electronic disorder has been observed. This suggests that structural disorder not only affects phonons but electronic state of the system as well. Thus, it appears that the increase in the width of electronic and phononic disorder may overlap in energy scale and may be responsible for the observed increase in the electron–phonon coupling parameter as estimated through Fano equation.

Notes

Acknowledgements

The authors sincerely thank DST-FIST (SR/FST/PSI-225/2016) for providing funding for Raman spectrometer. SIC IIT Indore is acknowledged for providing some of the experimental facilities. We sincerely thank the Raja Ramanna Center for Advanced Technology (RRCAT) Indore for providing synchrotron radiation facilities. The authors sincerely thank Dr A. K. Sinha, Mr. M. N. Singh and Mr. Anuj Upadhyay for their help during X-ray diffraction measurements. Ms. Aanchal Sati acknowledges CSIR New Delhi for providing Junior Research fellowship through grant No. 1061651837 and IIT Indore for providing an opportunity to peruse research through Ph.D. program. Authors AK, KW, VM sincerely thank IIT Indore for financial support through teaching assistantship.

References

  1. 1.
    Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 88, 410 (2000)CrossRefGoogle Scholar
  2. 2.
    J. Zhao, L. Li, Y. Wang, Z. Gui, Mater. Sci. Eng., B 99, 207 (2003)CrossRefGoogle Scholar
  3. 3.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)CrossRefGoogle Scholar
  4. 4.
    X. Wang, B.I. Lee, M.Z. Hu, E.A. Payzant, D.A. Blom, J. Mater. Sci. 14, 495 (2003)Google Scholar
  5. 5.
    S.Y. Wang, B.L. Cheng, C. Wang, S.A.T. Redfern, S.Y. Dai, K.J. Jin, H.B. Lu, Y.L. Zhou, Z.H. Chen, G.Z. Yang, J. Phys. Appl. Phys. 38, 2253 (2005)CrossRefGoogle Scholar
  6. 6.
    N.-H. Chan, R.K. Sharma, D.M. Smyth, J. Am. Ceram. Soc. 65, 167 (1982)CrossRefGoogle Scholar
  7. 7.
    Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, M. Cao, Mater. Chem. Phys. 109, 475 (2008)CrossRefGoogle Scholar
  8. 8.
    X.G. Tang, K.-H. Chew, H.L.W. Chan, Acta Mater. 52, 5177 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Anwar, P.R. Sagdeo, N.P. Lalla, J. Phys. 18, 3455 (2006)Google Scholar
  10. 10.
    S. Anwar, P.R. Sagdeo, N.P. Lalla, Solid State Commun. 138, 331 (2006)CrossRefGoogle Scholar
  11. 11.
    V. Mishra, A. Sagdeo, V. Kumar, M.K. Warshi, H.M. Rai, S.K. Saxena, D.R. Roy, V. Mishra, R. Kumar, P.R. Sagdeo, J. Appl. Phys. 122, 065105 (2017)CrossRefGoogle Scholar
  12. 12.
    M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, J. Am. Chem. Soc. 130, 6955–6963 (2008)CrossRefGoogle Scholar
  13. 13.
    A. von Hippel, Rev. Mod. Phys. 22, 221 (1950)CrossRefGoogle Scholar
  14. 14.
    G.H. Kwei, A.C. Lawson, S.J.L. Billinge, S.W. Cheong, J. Phys. Chem. 97, 2368 (2002)CrossRefGoogle Scholar
  15. 15.
    M. El Marssi, F. Le Marrec, I.A. Lukyanchuk, M.G. Karkut, J. Appl. Phys. 94, 3307 (2003)CrossRefGoogle Scholar
  16. 16.
    Y. Luspin, J.L. Servoin, F. Gervais, J. Phys. C 13, 3761 (1980)CrossRefGoogle Scholar
  17. 17.
    Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, J. Raman Spectrosc. 38, 1288 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Bhosale, A.K. Ramdas, A. Burger, A. Muñoz, A.H. Romero, M. Cardona, R. Lauck, R.K. Kremer, Phys. Rev. B 86, 195208 (2012)CrossRefGoogle Scholar
  19. 19.
    J.Q. Qi, T. Peng, Y.M. Hu, L. Sun, Y. Wang, W.P. Chen, L.T. Li, C.W. Nan, H.L.W. Chan, Nanoscale Res. Lett. 6, 466 (2011)CrossRefGoogle Scholar
  20. 20.
    U.D. Venkateswaran, V.M. Naik, R. Naik, Phys. Rev. B 58, 14256 (1998)CrossRefGoogle Scholar
  21. 21.
    S. Berweger, C.C. Neacsu, Y. Mao, H. Zhou, S.S. Wong, M.B. Raschke, Nat. Nanotechnol. 4, 496 (2009)CrossRefGoogle Scholar
  22. 22.
    S.-Y. Kuo, W.-Y. Liao, W.-F. Hsieh, Phys. Rev. B 64, 224103 (2001)CrossRefGoogle Scholar
  23. 23.
    A. Raeliarijaona, H. Fu, Phys. Rev. B 92, 094303 (2015)CrossRefGoogle Scholar
  24. 24.
    Y.I. Yuzyuk, P. Simon, Phys. Rev. B 68, 216101 (2003)CrossRefGoogle Scholar
  25. 25.
    R.A.P. Ribeiro, S.R. de Lázaro, Quím. Nova 37, 1165 (2014)CrossRefGoogle Scholar
  26. 26.
    L.P. Curecheriu, M. Deluca, Z.V. Mocanu, M.V. Pop, V. Nica, N. Horchidan, M.T. Buscaglia, V. Buscaglia, M. van Bael, A. Hardy, L. Mitoseriu, Phase Transit. 86, 703 (2013)CrossRefGoogle Scholar
  27. 27.
    P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 89, 8085 (2001)CrossRefGoogle Scholar
  28. 28.
    M. Osada, M. Kakihana, S. Wada, T. Noma, W.-S. Cho, Appl. Phys. Lett. 75, 3393 (1999)CrossRefGoogle Scholar
  29. 29.
    U.M. Pasha, H. Zheng, O.P. Thakur, A. Feteira, K.R. Whittle, D.C. Sinclair, I.M. Reaney, Appl. Phys. Lett. 91, 062908 (2007)CrossRefGoogle Scholar
  30. 30.
    J. Pokorný, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, J. Appl. Phys. 109, 114110 (2011)CrossRefGoogle Scholar
  31. 31.
    X. Chen, J. Chen, D. Ma, L. Fang, H. Zhou, Ceram. Int. 41, 2081 (2015)CrossRefGoogle Scholar
  32. 32.
    D.P. Dutta, M. Roy, N. Maiti, A.K. Tyagi, Phys. Chem. Chem. Phys. 18, 9758 (2016)CrossRefGoogle Scholar
  33. 33.
    E.V. Ramana, F. Figueiras, A. Mahajan, D.M. Tobaldi, B.F.O. Costa, M.P.F. Graça, M.A. Valente, J. Mater. Chem. C 4, 1066 (2016)CrossRefGoogle Scholar
  34. 34.
    Y. Sun, H. Liu, H. Hao, S. Zhang, J. Am. Ceram. Soc. 99, 3067 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Ingale, K.C. Rustagi, Phys. Rev. B 58, 7197 (1998)CrossRefGoogle Scholar
  36. 36.
    K.P. Jain, A.K. Shukla, R. Ashokan, S.C. Abbi, M. Balkanski, Phys. Rev. B 32, 6688 (1985)CrossRefGoogle Scholar
  37. 37.
    J. Chen, W.Z. Shen, J. Appl. Phys. 99, 013513 (2006)CrossRefGoogle Scholar
  38. 38.
    J.M. Wesselinowa, A.T. Apostolov, J. Appl. Phys. 108, 044316 (2010)CrossRefGoogle Scholar
  39. 39.
    Y. Stubrov, A. Nikolenko, V. Strelchuk, S. Nedilko, V. Chornii, Nanoscale Res. Lett. 12, 297 (2017)CrossRefGoogle Scholar
  40. 40.
    S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, D. Roy, Phys. Rev. B 91, 195411 (2015)CrossRefGoogle Scholar
  41. 41.
    J. Huso, H. Che, D. Thapa, A. Canul, M.D. McCluskey, L. Bergman, J. Appl. Phys. 117, 125702 (2015)CrossRefGoogle Scholar
  42. 42.
    S. Anwar, P.R. Sagdeo, N.P. Lalla, Mater. Res. Bull. 43, 1761 (2008)CrossRefGoogle Scholar
  43. 43.
    A. Sati, A. Kumar, V. Mishra, K. Warshi, A. Sagdeo, S. Anwar, R. Kumar, P.R. Sagdeo, J. Mater. Sci. (2019).  https://doi.org/10.1007/s10854-019-01128-z Google Scholar
  44. 44.
    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)CrossRefGoogle Scholar
  45. 45.
    A. Kumar, M.K. Warshi, V. Mishra, S.K. Saxena, R. Kumar, P.R. Sagdeo, Appl. Phys. A 123, 576 (2017)CrossRefGoogle Scholar
  46. 46.
    M.V. Kurik, Phys. Status Solidi Appl. Res. 8, 9 (1971)CrossRefGoogle Scholar
  47. 47.
    I.A. Weinstein, A.F. Zatsepin, Phys. Status Solidi C 1, 2916 (2004)CrossRefGoogle Scholar
  48. 48.
    H. Sumi, Y. Toyozawa, J. Phys. Soc. Jpn. 31, 342 (1971)CrossRefGoogle Scholar
  49. 49.
    D.L. Dexter, Phys. Rev. Lett. 19, 1383 (1967)CrossRefGoogle Scholar
  50. 50.
    A. Sagdeo, A. Nagwanshi, P. Pokhriyal, A.K. Sinha, P. Rajput, V. Mishra, P.R. Sagdeo, J. Appl. Phys. 123, 161424 (2018)CrossRefGoogle Scholar
  51. 51.
    H. Mohan Rai, S.K. Saxena, V. Mishra, A. Sagdeo, P. Rajput, R. Kumar, P.R. Sagdeo, J. Mater. Chem. C 4, 10876 (2016)CrossRefGoogle Scholar
  52. 52.
    V. Mishra, M.K. Warshi, A. Sati, A. Kumar, V. Mishra, A. Sagdeo, R. Kumar, P.R. Sagdeo, Mater. Sci. Semicond. Process. 86, 151 (2018)CrossRefGoogle Scholar
  53. 53.
    V. Mishra, A. Sati, M.K. Warshi, A.B. Phatangare, S. Dhole, V.N. Bhoraskar, H. Ghosh, A. Sagdeo, V. Mishra, R. Kumar, P.R. Sagdeo, Mater. Res. Express 5, 036210 (2018)CrossRefGoogle Scholar
  54. 54.
    V. Mishra, M.K. Warshi, R. Kumar, P.R. Sagdeo, J. Instrum. 13, T11003 (2018)CrossRefGoogle Scholar
  55. 55.
    A. Kumar, M.K. Warshi, V. Mishra, A. Sati, S. Banik, A. Sagdeo, R. Kumar, P.R. Sagdeo, Ceram. Int. (2019).  https://doi.org/10.1016/j.jpcs.2019.03.012 Google Scholar
  56. 56.
    A. Kumar, V. Mishra, M.K. Warshi, A. Sati, A. Sagdeo, R. Kumar, P.R. Sagdeo, J. Phys. Condens. Matter Inst. Phys. J. 5, 2 (2019).  https://doi.org/10.1088/1361-648X/ab1195 Google Scholar
  57. 57.
    J. Rodríguez-Carvajal, Phys. B Condens. Matter 192, 55 (1993)CrossRefGoogle Scholar
  58. 58.
    J.H. Nobbs, Rev. Prog. Color. Relat. Top. 15, 66 (1985)CrossRefGoogle Scholar
  59. 59.
    P. Kubelka, J. Opt. Soc. Am. 38, 448 (1948)CrossRefGoogle Scholar
  60. 60.
    K. Noba, Y. Kayanuma, Phys. Rev. B 60, 4418 (1999)CrossRefGoogle Scholar
  61. 61.
    S.M. Wasim, C. Rincón, G. Marín, P. Bocaranda, E. Hernández, I. Bonalde, E. Medina, Phys. Rev. B 64, 195101 (2001)CrossRefGoogle Scholar
  62. 62.
    M. Kranjčec, D.I. Desnica, B. Čelustka, G.S. Kovacs, I.P. Studenyak, Phys. Status Solidi A 144, 223 (1994)CrossRefGoogle Scholar
  63. 63.
    Y. Toyozawa, Camb. Core (2003)Google Scholar
  64. 64.
    T. Arima, Y. Tokura, J.B. Torrance, Phys. Rev. B 48, 17006 (1993)CrossRefGoogle Scholar
  65. 65.
    F. Moura, A.Z. Simões, L.S. Cavalcante, M.A. Zaghete, J.A. Varela, E. Longo, J. Alloys Compd. 466, L15 (2008)CrossRefGoogle Scholar
  66. 66.
    M.-W. Chu, Y. Shingaya, T. Nakayama, Appl. Phys. A 86, 101 (2007)CrossRefGoogle Scholar
  67. 67.
    A.R. Zanatta, I. Chambouleyron, Phys. Rev. B 53, 3833 (1996)CrossRefGoogle Scholar
  68. 68.
    A.R. Zanatta, M. Mulato, I. Chambouleyron, J. Appl. Phys. 84, 5184 (1998)CrossRefGoogle Scholar
  69. 69.
    M.I. Aroyo, A. Kirov, C. Capillas, J.M. Perez-Mato, H. Wondratschek, Acta Crystallogr. A 62, 115 (2006)CrossRefGoogle Scholar
  70. 70.
    R. Comes, M. Lambert, A. Guinier, Solid State Commun. 6, 715 (1968)CrossRefGoogle Scholar
  71. 71.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 63, 121405 (2001)CrossRefGoogle Scholar
  72. 72.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)CrossRefGoogle Scholar
  73. 73.
    H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)CrossRefGoogle Scholar
  74. 74.
    D. Bersani, P.P. Lottici, X.-Z. Ding, Appl. Phys. Lett. 72, 73 (1998)CrossRefGoogle Scholar
  75. 75.
    I.G. Siny, R.S. Katiyar, A.S. Bhalla, J. Raman Spectrosc. 29, 385 (1998)CrossRefGoogle Scholar
  76. 76.
    K. Nakamura, M. Kitajima, Phys. Rev. B 45, 78 (1992)CrossRefGoogle Scholar
  77. 77.
    M. Kitajima, Crit. Rev. Solid State Mater. Sci. 22, 275 (1997)CrossRefGoogle Scholar
  78. 78.
    K. Nakamura, M. Kitajima, Appl. Phys. Lett. 59, 1550 (1991)CrossRefGoogle Scholar
  79. 79.
    A. Kumar, V. Mishra, M.K. Warshi, A. Sati, A. Sagdeo, R. Kumar, P.R. Sagdeo, J. Phys. Chem. Solids 130, 230 (2019)CrossRefGoogle Scholar
  80. 80.
    J.D. Carey, S.R. Silva, Phys. Rev. B 70, 233101 (2004)CrossRefGoogle Scholar
  81. 81.
    J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 2001)CrossRefGoogle Scholar
  82. 82.
    S.F. Wu, P. Richard, X.B. Wang, C.S. Lian, S.M. Nie, J.T. Wang, N.L. Wang, H. Ding, Phys. Rev. B 90, 054519 (2014)CrossRefGoogle Scholar
  83. 83.
    J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M.S. Dresselhaus, Q. Xiong, Nano Lett. 11, 2407 (2011)CrossRefGoogle Scholar
  84. 84.
    V.G. Sathe, S. Tyagi, G. Sharma, J. Phys 755, 012008 (2016)Google Scholar
  85. 85.
    P. Yogi, S.K. Saxena, S. Mishra, H.M. Rai, R. Late, V. Kumar, B. Joshi, P.R. Sagdeo, R. Kumar, Solid State Commun. 230, 25 (2016)CrossRefGoogle Scholar
  86. 86.
    A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)CrossRefGoogle Scholar
  87. 87.
    A. Kumar, S. Chaudhary, D.K. Pandya, S.K. Sharma, Phys. Rev. B 90, 024302 (2014)CrossRefGoogle Scholar
  88. 88.
    U. Fano, Phys. Rev. 124, 1866 (1961)CrossRefGoogle Scholar
  89. 89.
    P. Yogi, S. Mishra, S.K. Saxena, V. Kumar, R. Kumar, J. Phys. Chem. Lett. 7, 5291 (2016)CrossRefGoogle Scholar
  90. 90.
    I. Childres, L.A. Jauregui, Y.P. Chen, J. Appl. Phys. 116, 233101 (2014)CrossRefGoogle Scholar
  91. 91.
    H.F. Liu, N. Xiang, S. Tripathy, S.J. Chua, J. Appl. Phys. 99, 103503 (2006)CrossRefGoogle Scholar
  92. 92.
    A. Sergeev, M.Y. Reizer, V. Mitin, Phys. Rev. Lett. 94, 136602 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Material Research Laboratory, Discipline of Physics and MEMSIndian Institute of Technology IndoreIndoreIndia
  2. 2.Synchrotron Utilization SectionRaja Ramanna Center for Advanced TechnologyIndoreIndia
  3. 3.Homi Bhabha National Institute, Training School ComplexMumbaiIndia

Personalised recommendations