Effects of γ-ray irradiation on microstructure and mechanical property of AuSn20 solder joint

  • Li Wen
  • Songbai XueEmail author
  • JianXin Wang
  • Weimin Long
  • Shujuan Zhong


In this study, MoCu20/Cu joints via eutectic bonding recipe with AuSn20 solder were obtained to investigate the effect of γ-ray irradiation on the microstructure and mechanical properties of the solder joints. Firstly, the experimental results showed that the number and size of voids in joints were gradually increased during irradiating process due to the migration and agglomeration of irradiation-induced vacancies. Secondly, the (Au,Ni)Sn and (Ni,Au)3Sn2 IMC layers and Au-rich joints were formed by the activation of interfacial reaction between Au–Sn solder and plating metal. Thirdly, the failure mode was altered from ductile fracture to brittle fracture, and the shear strength of joint was decreased by 37.23% after 1000 h γ-ray irradiation in the results of mechanical test. In summary, the γ-ray irradiation has a highly detrimental influence on the AuSn20 solder joint.



This project was supported by National Natural Science Foundation of China (Grant No. 51675269). This work was also supported by the State Key Laboratory of Advanced Brazing Filler Metals & Technology (Zhengzhou Research Institute of Mechanical Engineering CO., LTD.), China (Grant No. SKLABFMT201704). Additionally,this work was supported by the Fundamental Research Funds for the Central Universities and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    V. Chidambaram, J. Hattel, J. Hald, Mater. Des. 31, 4638–4645 (2010)CrossRefGoogle Scholar
  2. 2.
    Y. Du, C. Li, B. Huang, T. Ming, C. Du, Solder. Surf. Mt. Technol. 27, 7–12 (2015)CrossRefGoogle Scholar
  3. 3.
    X. Zhu, R. Wang, C. Peng, X. Wei, P. Jian, J. Mater. Sci.: Mater. Electron. 25, 742–748 (2014)Google Scholar
  4. 4.
    Q. Tan, D. Chao, M. Yong, H. Guo, Gold Bull. 44, 27–35 (2011)CrossRefGoogle Scholar
  5. 5.
    K.A. Lee, Y.M. Jin, Y.H. Sohn, J. Namkung, M.C. Kim, Met. Mater. Int. 17, 7–14 (2011)CrossRefGoogle Scholar
  6. 6.
    J.W. Yoon, H.S. Chun, S.B. Jung, J. Alloys Compd. 469, 108–115 (2009)CrossRefGoogle Scholar
  7. 7.
    J.W. Elmer, R.P. Mulay, Scripta Mater. 120, 14–18 (2016)CrossRefGoogle Scholar
  8. 8.
    W. Liu, Y. Wang, Y. Ma, Y. Qiang, Y. Huang, Mater. Sci. Eng. A 651, 626–635 (2016)CrossRefGoogle Scholar
  9. 9.
    Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, C.R. Kao, J. Alloys Compd. 671, 340–345 (2016)CrossRefGoogle Scholar
  10. 10.
    R. Ramesham, Int. Soc. Opt. Photonics 7928, 79280F (2011)Google Scholar
  11. 11.
    J.W. Yoon, S.B. Jung, Microelectron. Eng. 84, 2634–2639 (2007)CrossRefGoogle Scholar
  12. 12.
    M.T. Sheen, Y.H. Ho, C.L. Wang, K.C. Hsieh, W.H. Cheng, J. Electron. Mater. 34, 1318–1323 (2005)CrossRefGoogle Scholar
  13. 13.
    J.W. Yoon, B.I. Noh, S.B. Jung, J. Mater. Sci.: Mater. Electron. 22, 84–90 (2011)Google Scholar
  14. 14.
    S. Duzellier, Aerosp. Sci. Technol. 9, 93–99 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Kaya, A. Jaksic, E. Yilmaz, Radiat. Phys. Chem. 149, 7–13 (2018)CrossRefGoogle Scholar
  16. 16.
    A. Teffahi, D. Hamri, A. Mostefa, A. Saidane, N. Al-Saqri, J.F. Felix, M. Henini, Curr. Appl. Phys. 16, 850–858 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Kaya, E. Yilmaz, J. Radioanal. Nucl. Chem. 302, 425–431 (2014)CrossRefGoogle Scholar
  18. 18.
    J.H. Al-Zahrani, M. El-Hagary, A. El-Taher, Mat. Sci. Semicond. Proc. 39, 74–78 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Sun, Y. Liu, D. Wang, Z. Zhou, Adv. Mater. Sci. Eng. 2018, 1–7 (2018)Google Scholar
  20. 20.
    L. Liu, Z. Cui, L. Gao, J. Semicond. Tech. Sci. 41, 631–635 (2016)Google Scholar
  21. 21.
    I. Souli, V.L. Terziyska, J. Zechner, C. Mitterer, Thin Solid Films 653, 301–308 (2018)CrossRefGoogle Scholar
  22. 22.
    W. Liu, Y. Wang, Y. Ma, Q. Yu, Y. Huang, Mater. Sci. Eng. A 653, 13–22 (2016)CrossRefGoogle Scholar
  23. 23.
    H.Q. Dong, V. Vuorinen, X.W. Liu, T. Laurila, J. Li, M. Paulasto-Kröckel, J. Electron. Mater. 45, 566–575 (2016)CrossRefGoogle Scholar
  24. 24.
    W. Xu, Y. Zhang, G. Cheng, W. Jian, Y. Zhu, Nat. Commun. 4, 2288–2293 (2013)CrossRefGoogle Scholar
  25. 25.
    T.N. Yang, C. Lu, G. Velisa, K. Jin, P. Xiu, Y. Zhang, L. Wang, Scripta Mater. 158, 57–61 (2019)CrossRefGoogle Scholar
  26. 26.
    Z.J. Han, S.B. Xue, J.H. Wang, X. Zhang, L. Zhang, S.L. Yu, H. Wang, T. Nonferr, Metal. Soc. 18, 814–818 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Jiangsu Provincial Key Laboratory of Advanced Welding TechnologyJiangsu University of Science and TechnologyZhenjiangChina
  3. 3.State Key Laboratory of Advanced Brazing Filler Metals and TechnologyZhengzhou Research Institute of Mechanical Engineering CO., LTD.ZhengzhouChina

Personalised recommendations