Advertisement

Growth, structural and optical limiting property of a new third order nonlinear optical material: piperazinium bis (2-carboxypyridine) monohydrate

  • P. RekhaEmail author
  • G. Chakkaravarthi
  • R. Mohan Kumar
  • G. Vinitha
  • R. Kanagadurai
Article
  • 13 Downloads

Abstract

Piperazinium bis (2-carboxypyridine) monohydrate (PPPA) was successfully synthesized and crystal was grown from aqueous solution. PPPA compound crystallized in centric (or achiral) space group P21/C. The lattice perfection was analyzed by high-resolution X-ray diffraction rocking curve measurement. The chemical structure was confirmed by FTIR and NMR spectral studies. The range of optical transmittance of PPPA crystal was elucidated from UV–visible spectral studies. Optical resistance was estimated from LDT studies using Nd:YAG laser. Thermal stability have also investigated for PPPA compound which shows that PPPA crystal is potentially applicable for optical applications. Mechanical stability and material’s category were established from the Vicker’s hardness studies. Growth mechanism of PPPA was revealed from etching studies. The grown crystal was investigated for third order susceptibility by Z-scan technique. It was found to that they behaved as saturable absorber and self defocused in refraction which is essential for optical switching and limiting applications. Its second molecular hyperpolarizability (γ) at 532 nm was estimated to be 3.4746 × 10−9 esu.

Notes

Acknowledgement

One of the authors (P. R) expresses her gratitude to the Directorate of Collegiate Education, Government of Tamil Nadu, India for the financial assistance and the authors acknowledge. Dr. K. K. Maurya, Principal Scientist & Head, Crystal Growth and X-ray Analysis Division, New Delhi for HRXRD facility.

References

  1. 1.
    T.J. Muller, U.H. Bunz, Functional Organic Materials: Syntheses, Strategies and Applications (Wiley, Chichester, 2007)Google Scholar
  2. 2.
    B.D. Malhotra, Handbook of Polymers in Electronics (Smithers Rapra Publishing, Shawbury, 2001)Google Scholar
  3. 3.
    K. Rottwitt, K.P. Tidemand-Lichtenberg, Nonlinear Optics: Principles and Applications, vol. 3 (CRC Press, Boca Raton, 2014)CrossRefGoogle Scholar
  4. 4.
    C. Li, Nonlinear Optics Principles and Applications (Springer, Berlin, 2016)Google Scholar
  5. 5.
    R.W. Munn, C.N. Ironside, Principles and Applications of Nonlinear Optical Materials (Springer, Amsterdam, 1993)CrossRefGoogle Scholar
  6. 6.
    G.S. He, Nonlinear Optics and Photonics (Oxford University Press, Oxford, 2014)CrossRefGoogle Scholar
  7. 7.
    P. Gunter, Nonlinear Optical Effects and Materials, vol. 72 (Springer, Berlin, 2012)Google Scholar
  8. 8.
    T.L. Gilchrist, Heterocyclic Chemistry (Prentice Hall, Upper Saddle River, 1997)Google Scholar
  9. 9.
    G. Peramaiyan, P. Pandi, B.M. Sornamurthy, G. Bhagavannarayana, R. Mohan Kumar, Spectrochim. Acta. 95, 310–316 (2012)CrossRefGoogle Scholar
  10. 10.
    P. Pandi, G. Peramaiyan, G. Bhagavannarayan, R. MohanKumar, R. Jayavel, Optik 124, 5792–5796 (2013)CrossRefGoogle Scholar
  11. 11.
    P. Pandi, G. Peramaiyan, S. Sudhahar, G. Chakkaravarthi, R. MohanKumar, G. Bhagavannarayana, R. Jayavel, Spectrochim. Acta. 98, 7–13 (2012)CrossRefGoogle Scholar
  12. 12.
    P. Rekha, G. Peramaiyan, R. Mohan Kumar, R. Kanagadurai, Mater. Lett. 129, 202–204 (2014)CrossRefGoogle Scholar
  13. 13.
    P. Rekha, G. Peramaiyan, M. NizamMohideen, R. Mohan Kumar, R. Kanagadurai, Spectrochim. Acta. 139, 302–306 (2015)CrossRefGoogle Scholar
  14. 14.
    P. Rekha, G. Peramaiyan, M. NizamMohideen, R. Mohan Kumar, R. Kanagadurai, J. Cryst. Growth 441, 18–25 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Wojtas, A. Gągor, O. Czupinski, A. Piecha-Bisiorek, D. Isakov, W. Medycki, R. Jakubas, Cryst. Eng. Commun. 17(16), 3171–3180 (2015)CrossRefGoogle Scholar
  16. 16.
    T. Dhanabal, G. Amirthaganesan, M. Dhandapani, S.K. Das, J. Chem. Sci. 124, 951–961 (2012)CrossRefGoogle Scholar
  17. 17.
    D. Cremer, J.A. Pople, J. Am. Chem. Soc. 97, 1354–1358 (1975)CrossRefGoogle Scholar
  18. 18.
    M. Nardelli, Acta Crystallogr. Sect. C 39, 1141–1142 (1983)CrossRefGoogle Scholar
  19. 19.
    D. Cremer, J.A. Pople, J. Am. Chem. Soc. 97, 1354–1358 (1975)CrossRefGoogle Scholar
  20. 20.
    F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2, S1–S19 (1987)CrossRefGoogle Scholar
  21. 21.
    J. Bernstein, R.E. Davis, L. Shimoni, N.L. Chang, Angew. Chem. Int. Ed. Engl. 34, 1555–1573 (1995)CrossRefGoogle Scholar
  22. 22.
    K. Lal, G. Bhagvannarayana, J. Appl. Cryst. 22, 209–215 (1989)CrossRefGoogle Scholar
  23. 23.
    K. Lal, Proc. Indian Natl. Sci. Acad. 57, 283–300 (1991)Google Scholar
  24. 24.
    B.K. Tanner, J. Cryst. Growth 99, 1315–1323 (1990)CrossRefGoogle Scholar
  25. 25.
    S.K. Kushwaha, K.K. Maurya, N. Vijayan, B. Kumar, R. Bhatt, S. Ganesamoorthy, G. Bhagavannarayana, Cryst. Eng. Commun. 14, 3297–3305 (2012)CrossRefGoogle Scholar
  26. 26.
    B.W. Batterman, H. Cole, Rev. Mod. Phys. 36, 681 (1964)CrossRefGoogle Scholar
  27. 27.
    R.M. Silverstein, F.X. Webster, Spectrometric Identification of Organic Compounds (Wiley, Chichester, 2006)Google Scholar
  28. 28.
    S. Gunasekaran, B. Anita, Indian J. Pure Appl. Phys. 46, 833–838 (2008)Google Scholar
  29. 29.
    C. Joseph, M.A. Ittyachen, Mater. Lett. 49, 299–302 (2001)CrossRefGoogle Scholar
  30. 30.
    V. Venkataramanan, S. Maheswaran, J.N. Sherwood, H.L. Bhat, J. Cryst. Growth 179, 605–610 (1997)CrossRefGoogle Scholar
  31. 31.
    B.K. Periyasamy, R.S. Jebas, N. Gopalakrishnan, T. Balasubramanian, Mater. Lett. 61, 4246–4249 (2007)CrossRefGoogle Scholar
  32. 32.
    A. Ashour, N. El-Kadry, S.A. Mahmoud, Thin Solid Films 269, 117–120 (1995)CrossRefGoogle Scholar
  33. 33.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627–637 (1966)CrossRefGoogle Scholar
  34. 34.
    A.T. Ince, M.K. Torun, M.H. Yukselici, Oxide Materials for Electronic Engineering (OMEE), IEEE International Conference, pp 73–74 (2012)Google Scholar
  35. 35.
    S.Y. Hu, Y.C. Lee, J.L. Shen, K.W. Chen, Y.S. Huang, Phys. Status Solidi A 204, 2389–2395 (2007)CrossRefGoogle Scholar
  36. 36.
    S.C. Moldoveanu, Pyrolysis of Organic Molecules: Applications to Health and Environmental Issues (Elsevier, Amsterdam, 2009)Google Scholar
  37. 37.
    R.S. Kumar, K. Hariharan, Mater. Chem. Phys. 60(1), 28–38 (1999)CrossRefGoogle Scholar
  38. 38.
    P. Bergo, W.M. Pontuschka, J.M. Prison, C.C. Motta, J.R. Martinelli, J. Non-Cryst. Solids 348, 84–89 (2004)CrossRefGoogle Scholar
  39. 39.
    R.R. Reddy, M. Ravi Kumar, T.V.R. Rao, J. Phys. Chem. Solids 54, 603–605 (1993)CrossRefGoogle Scholar
  40. 40.
    R.R. Reddy, Y. Nazeer Ahammed, M. Ravi Kumar, J. Phys. Chem. Solids 56, 825–829 (1995)CrossRefGoogle Scholar
  41. 41.
    F. Helen, G. Kanchana, Mater. Chem. Phys. 151, 5–13 (2015)CrossRefGoogle Scholar
  42. 42.
    K. Sangwal, Mater. Chem. Phys. 63, 145–152 (2000)CrossRefGoogle Scholar
  43. 43.
    J.H. Westbrook, The Science of Hardness testing and Its Research Applications (American Society for Metals, US, 1973)Google Scholar
  44. 44.
    A.C. Fischer-cripps, J. Mater. Sci. 32, 727–736 (1997)CrossRefGoogle Scholar
  45. 45.
    K. Sangwal, Cryst. Res. Technol. 44, 1019–1037 (2009)CrossRefGoogle Scholar
  46. 46.
    E.M. Onitsch, Mikroscopie 2, 131–151 (1947)Google Scholar
  47. 47.
    D.G. Bhat, J. Am. Ceram. Soc. 64, 165–166 (1981)CrossRefGoogle Scholar
  48. 48.
    K. Nihara, R. Morena, D.P.H. Hasselman, J. Mater. Sci. Lett. 1(1), 13–16 (1982)CrossRefGoogle Scholar
  49. 49.
    B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 62, 347–350 (1979)CrossRefGoogle Scholar
  50. 50.
    K. Sangwal, Etching of Crystals: Theory, Experiment, and Application (North-Holland, Amsterdam, 1987)Google Scholar
  51. 51.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quant. Electron 26, 760–769 (1990)CrossRefGoogle Scholar
  52. 52.
    M.G. Kuzyk, C.W. Dirk, Characterization techniques and tabulations for organic nonlinear optical materials (Marcel Dekker, New York, 1998)Google Scholar
  53. 53.
    J. Sun, W.F. Guo, X.Q. Wang, G.H. Zhang, X.B. Sun, L.Y. Zhu, Q. Ren, D. Xu, Opt. Commun. 280, 183–187 (2007)CrossRefGoogle Scholar
  54. 54.
    J.E. Ehrlich, X.L. Wu, I.Y. Lee, Z.Y. Hu, H. Rockel, S.R. Marder, J.W. Perry, Opt. Lett. 22, 1843–1845 (1997)CrossRefGoogle Scholar
  55. 55.
    P. Wei, O.F. Tan, Y. Zhu, G.H. Duan, Appl. Opt. 46, 3694–3699 (2007)CrossRefGoogle Scholar
  56. 56.
    N.S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, H. Spahni, J. Opt. Soc. Am. B 24, 1874–1885 (2007)CrossRefGoogle Scholar
  57. 57.
    L. Aparicio-Ixta, M. Rodriguez, G. Ramos-Ortiz, Organic nanomaterials with two-photon absorption properties for biomedical applications, in Contemporary Optoelectronics, ed. by O. Shulika, I. Sukhoivanov (Springer, Berlin, 2016), pp. 25–50CrossRefGoogle Scholar
  58. 58.
    H.L. Fan, Q. Ren, X.Q. Wang, T.B. Li, J. Sun, G.H. Zhang, D. Xu, G. Yu, Z.H. Sun, Nat. Sci. 1, 136–141 (2009)Google Scholar
  59. 59.
    M.G. Kuzyk, C.W. Dirk, Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials (Marcel Dekker, New York, 1998)Google Scholar
  60. 60.
    L.W. Tutt, T.F. Boggess, Prog. Quant. Electron. 17, 299–338 (1993)CrossRefGoogle Scholar
  61. 61.
    R.A. Ganeev, Nonlinear Optical Properties of Materials (Springer, New York, 2013)CrossRefGoogle Scholar
  62. 62.
    J. Ion, Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application (Butterworth-Heinemann, Oxford, 2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBharathi Women’s CollegeChennaiIndia
  2. 2.Department of PhysicsCPCL Polytechnic CollegeChennaiIndia
  3. 3.Department of PhysicsPresidency CollegeChennaiIndia
  4. 4.Department of PhysicsVIT UniversityChennaiIndia

Personalised recommendations