All-range flexible and biocompatible humidity sensor based on poly lactic glycolic acid (PLGA) and its application in human breathing for wearable health monitoring

  • Afaque Manzoor Soomro
  • Faiza Jabbar
  • Muhsin Ali
  • Jae-Wook Lee
  • Seong Woo Mun
  • Kyung Hyun ChoiEmail author


This paper reports a fast, linear, all-range sensitive and biocompatible humidity sensor using poly lactic glycolic acid (PLGA) as a sensing layer for the first time. The device is fabricated using all printing methods. The high definition interdigitated electrode structure was printed on flexible PET substrate by reverse offset printing setup using silver ink, while PLGA ink was deposited using spin coating. IDEs with two different dimensions were printed with three samples of each. The output of sensor is impedance which decreases with increase in relative humidity in a controlled chamber. The results show excellent stability, obvious response to RH for full range from 0 to 100 %RH with fast response time of 3 s and recovery time of 6 s. Sensor data can be received continuously using smart phone with a Wi-Fi connection with ESP8266 MCUNODE. Sensor’s flexibility test was also performed for 5 mm mechanical bending radius which showed reasonable consistency with results of flat sensor. The biocompatibility of sensor’s active layer was analyzed and confirmed by culturing human small air way epithelial cells for 7 days. To utilize sensor’s feature of being biocompatible, it was then used for human respiration monitoring which enabled the proposed device to be strong candidate for wearable electronics and health monitoring applications.



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1A2B3001830).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10854_2019_1277_MOESM1_ESM.docx (6.5 mb)
Supplementary material 1 (DOCX 6666 kb)


  1. 1.
    J. Zhao, N. Li, H. Yu, Z. Wei, M. Liao, P. Chen, S. Wang, D. Shi, Q. Sun, G. Zhang, Adv. Mater. 29, 1 (2017)Google Scholar
  2. 2.
    R. Amin, S.H. Islam, G.P. Biswas, M.K. Khan, N. Kumar, Futur. Gener. Comput. Syst. 80, 483 (2018)CrossRefGoogle Scholar
  3. 3.
    H.M. Jawad, R. Nordin, S.K. Gharghan, A.M. Jawad, M. Ismail, Sensors (Switzerland) 17, 1781 (2017)CrossRefGoogle Scholar
  4. 4.
    L. Shabnam, S.N. Faisal, A.K. Roy, E. Haque, A.I. Minett, V.G. Gomes, Food Chem. 221, 751 (2017)CrossRefGoogle Scholar
  5. 5.
    M.S. Noh, S. Kim, D.K. Hwang, C.Y. Kang, Sens. Actuat., A Phys. 261, 288 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Sajid, H.B. Kim, G.U. Siddiqui, K.H. Na, K.H. Choi, Sens. Actuat., A Phys. 262, 68 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Ali, A. Hassan, G. Hassan, J. Bae, C.H. Lee, Carbon N. Y. 105, 23 (2016)CrossRefGoogle Scholar
  8. 8.
    D. Hernández-Rivera, G. Rodríguez-Roldán, R. Mora-Martínez, E. Suaste-Gómez, Sensors (Switzerland) 17, 1009 (2017)CrossRefGoogle Scholar
  9. 9.
    X. Xiao, Q.J. Zhang, J.H. He, Q.F. Xu, H. Li, N.J. Li, D.Y. Chen, J.M. Lu, Sens. Actuat. B Chem. 255, 1147 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Li, C. Deng, M. Yang, Sens. Actuat. B Chem. 165, 7 (2012)CrossRefGoogle Scholar
  11. 11.
    A.J. Reynolds, J.C. Conboy, Sens. Actuat. B Chem. 273, 921 (2018)CrossRefGoogle Scholar
  12. 12.
    A.I. Buvailo, Y. Xing, J. Hines, N. Dollahon, E. Borguet, A.C.S. Appl, Mater. Interfaces 3, 528 (2011)CrossRefGoogle Scholar
  13. 13.
    T.Q. Trung, N.E. Lee, Adv. Mater. 28, 4338 (2016)CrossRefGoogle Scholar
  14. 14.
    C. Strangfeld, S. Kruschwitz, Constr. Build. Mater. 177, 511 (2018)CrossRefGoogle Scholar
  15. 15.
    S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhänen, ACS Nano 7, 11166 (2013)CrossRefGoogle Scholar
  16. 16.
    A.D. Smith, K. Elgammal, F. Niklaus, A. Delin, A.C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, M.C. Lemme, Nanoscale 7, 19099 (2015)CrossRefGoogle Scholar
  17. 17.
    C. Challeton, F. Branea, M. Schlumberger, N. Gaillard, F. De Vathaire, C. Badie, P. Antonini, C. Parmentier, Int. J. Radiat. Oncol. Biol. Phys. 37, 163 (1997)CrossRefGoogle Scholar
  18. 18.
    H. Guo, C. Lan, Z. Zhou, P. Sun, D. Wei, C. Li, Nanoscale 9, 6246 (2017)CrossRefGoogle Scholar
  19. 19.
    S.T. Navale, A.T. Mane, M.A. Chougule, N.M. Shinde, J. Kim, V.B. Patil, RSC Adv. 4, 44547 (2014)CrossRefGoogle Scholar
  20. 20.
    M.M. ur Rehman, M.M. Rehman, M. Sajid, J.W. Lee, K.H. Na, J.B. Ko, K.H. Choi, J. Mater. Sci.: Mater. Electron. 29, 14396 (2018)Google Scholar
  21. 21.
    J. Lee, S. Mulmi, V. Thangadurai, S.S. Park, ACS Appl. Mater. Interfaces. 7, 15506 (2015)CrossRefGoogle Scholar
  22. 22.
    G. Hassan, J. Bae, C.H. Lee, A. Hassan, J. Mater. Sci.: Mater. Electron. 29, 5806 (2018)Google Scholar
  23. 23.
    J. Miao, L. Cai, S. Zhang, J. Nah, J. Yeom, C. Wang, A.C.S. Appl, Mater. Interfaces 9, 10019 (2017)CrossRefGoogle Scholar
  24. 24.
    S. Kano, K. Kim, M. Fujii, ACS Sens. 2, 828 (2017)CrossRefGoogle Scholar
  25. 25.
    V. Vivekananthan, N.R. Alluri, Y. Purusothaman, A. Chandrasekhar, S. Selvarajan, S.J. Kim, A.C.S. Appl, Mater. Interfaces 10, 18650 (2018)CrossRefGoogle Scholar
  26. 26.
    I.L. Liakos, A. Mondini, C. Filippeschi, V. Mattoli, F. Tramacere, B. Mazzolai, Mater. Today Chem. 6, 1 (2017)CrossRefGoogle Scholar
  27. 27.
    S.K. Mahadeva, S. Yun, J. Kim, Sens. Actuat. A Phys. 165, 194 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Lee, Y.-J. Park, C. Kim, J.-H. So, B. Yeom, H.-J. Koo, Polymer (Guildf). 164, 1 (2019)CrossRefGoogle Scholar
  29. 29.
    J. Wu, X. Lu, L. Tan, B. Zhang, K. Yang, J. Biomed. Mater. Res. 101, 1222 (2013)CrossRefGoogle Scholar
  30. 30.
    A.C. Dumitru, F.M. Espinosa, R. Garcia, G. Foschi, S. Tortorella, F. Valle, M. Dallavalle, F. Zerbetto, F. Biscarini, Nanoscale 7, 5403 (2015)CrossRefGoogle Scholar
  31. 31.
    A.C. Dumitru, F.M. Espinosa, R. Garcia, G. Foschi, S. Tortorella, F. Valle, M. Dallavalle, F. Zerbetto, F. Biscarini, Nanoscale 7, 5403 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Meeus, D.J. Scurr, K. Amssoms, M.C. Davies, C.J. Roberts, G. Van Den Mooter, Mol. Pharm. 10, 3213 (2013)CrossRefGoogle Scholar
  33. 33.
    T. Ponnusamy, L.B. Lawson, L.C. Freytag, D.A. Blake, R.S. Ayyala, V.T. John, Biomatter 2, 77 (2012)CrossRefGoogle Scholar
  34. 34.
    A.H.M. Yusop, N.M. Daud, H. Nur, M.R.A. Kadir, H. Hermawan, Sci. Rep. 5, 1 (2015)CrossRefGoogle Scholar
  35. 35.
    Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi, X. Wang, Y. Jin, H. Ouyang, Z. Li, Z.L. Wang, Sci. Adv. 2, 1 (2016)Google Scholar
  36. 36.
    T. Arasoglu, S. Derman, B. Mansuroglu, Nanotechnology 27, 025103 (2016)CrossRefGoogle Scholar
  37. 37.
    P. Jiang, D. Yu, W. Zhang, Z. Mao, C. Gao, RSC Adv. 5, 40924 (2015)CrossRefGoogle Scholar
  38. 38.
    B. Chethan, Y.T. Ravikiran, S.C. Vijayakumari, H.G. Rajprakash, S. Thomas, Sens. Actuat. A Phys. 280, 466 (2018)CrossRefGoogle Scholar
  39. 39.
    W. Qu, W. Wlodarski, J.-U. Meyer, Sens. Actuat. B 64, 76 (2000)CrossRefGoogle Scholar
  40. 40.
    O.K. Varghese, P.D. Kichambre, D. Gong, K.G. Ong, E.C. Dickey, C.A. Grimes, Sens. Actuat. B Chem. 81, 32 (2001)CrossRefGoogle Scholar
  41. 41.
    M. Sajid, H.B. Kim, J.H. Lim, K.H. Choi, J. Mater. Chem. C 6, 1421 (2018)CrossRefGoogle Scholar
  42. 42.
    G.U. Siddiqui, M. Sajid, J. Ali, S.W. Kim, Y.H. Doh, K.H. Choi, Sens. Actuat. B Chem. 266, 354 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Afaque Manzoor Soomro
    • 1
  • Faiza Jabbar
    • 1
  • Muhsin Ali
    • 1
  • Jae-Wook Lee
    • 1
  • Seong Woo Mun
    • 1
  • Kyung Hyun Choi
    • 1
    Email author
  1. 1.Department of Mechatronics EngineeringJeju National UniversityJejuSouth Korea

Personalised recommendations