Advertisement

Synthesis and characterization of Cu doped ZnO nanoparticles for stable and fast response UV photodetector at low noise current

  • Imen Ben Elkamel
  • Nejeh HamdaouiEmail author
  • Amine Mezni
  • Ridha Ajjel
  • Lotfi Beji
Article
  • 47 Downloads

Abstract

The rising demand for optoelectronic devices to be operable in adverse environments necessitates the sensing of ultraviolet (UV) radiation. Here, a highly sensitive, fast responding Cu doped zinc oxide nanoparticles (Nps) based UV photodetector (PD) is reported. For the first time, Cu doped ZnO Nps are grown via forced hydrolysis of acetate salt of metals in a polyol medium. Various characterization methods including X-Ray diffraction, high resolution transmission electron microscopy and Fourier infrared spectroscopy are used to testify the presence of Cu element in ZnO Nps, although the diffuse reflectance and PL characterization are used to study the optical properties. The performance of the PD has been established by photocurrent measurements under different power density. Our device exhibited good photoresponse under UV illumination (375 nm) at 1 V bias voltage. Furthermore, the response of the PD is much better than other detectors based on oxide semiconductors nanostructures, and, especially, it shows a higher responsivity as compared with other photodetectors. In addition, achieved a highest responsivity of 40.12 A/W, quick response (rise/decay time of 0.8 s/3 s) and high sensitivity (2 × 104) for the Cu doped ZnO Nps annealed at 300 °C. It is established that the devices under higher power incident light show much lower 1/f noise. These results are meaningful to the noise control and performance improvement in the development of Schottky diode based PD-devices.

Notes

References

  1. 1.
    R. Shabannia, High-sensitivity UV photodetector based on oblique and vertical Co-doped ZnO nanorods. Mater. Lett. 214, 254–256 (2018)CrossRefGoogle Scholar
  2. 2.
    S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, P.S. Patil, Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B Chem. 240, 426–433 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Dhar, T. Majumder, P. Chakraborty, S.P. Mondal, DMSO modified PEDOT: PSS polymer/ZnO nanorods Schottky junction ultraviolet photodetector: Photoresponse, external quantum efficiency, detectivity, and responsivity augmentation using N doped graphene quantum dots. Org. Electro. 53, 101–110 (2017)CrossRefGoogle Scholar
  4. 4.
    V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sens Actuators B Chem 239, 1185–1193 (2017)CrossRefGoogle Scholar
  5. 5.
    Z. Bai, Y. Zhang, Self-powered UV–visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions. J. Alloy. Compd. 675, 325–330 (2016)CrossRefGoogle Scholar
  6. 6.
    M.L. Yola, T. Eren, N. Atar, S. Wang, Adsorptive and photocatalytic removal of reactive dyes by silver nanoparticle-colemanite ore waste. Chem. Eng. J. 242, 333–340 (2014)CrossRefGoogle Scholar
  7. 7.
    V.K. Gupta, N. Atar, M.L. Yola, Z. Üstündağ, L. Uzun, A novel magnetic Fe@ Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 48, 210–217 (2014)CrossRefGoogle Scholar
  8. 8.
    V.K. Gupta, S. Agarwal, A. Olgun, Hİ. Demir, M.L. Yola, N. Atar, Adsorptive properties of molasses modified boron enrichment waste based nanoclay for removal of basic dyes. J. Ind. Eng. Chem. 34, 244–249 (2016)CrossRefGoogle Scholar
  9. 9.
    S.P. Patil, V.L. Patil, S.S. Shendage, N.S. Harale, S.A. Vanalakar, J.H. Kim, P.S. Patil, Spray pyrolyzed indium oxide thick films as NO2 gas sensor. Ceram. Int. 42(14), 16160–16168 (2016)CrossRefGoogle Scholar
  10. 10.
    S.A. Vanalakar, V.L. Patil, N.S. Harale, S.A. Vhanalakar, M.G. Gang, J.Y. Kim, J.H. Kim, Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sens Actuators B Chem. 221, 1195–1201 (2015)CrossRefGoogle Scholar
  11. 11.
    S.J. Young, Y.H. Liu, Low-frequency noise properties of MgZnO nanorod ultraviolet photodetectors with and without UV illumination. Sens. Actuators, A 269, 363–368 (2018)CrossRefGoogle Scholar
  12. 12.
    B.A. Gozeh, A. Karabulut, A. Yildiz, F. Yakuphanoglu, Solar light responsive ZnO nanoparticles adjusted using Cd and La Co-dopant photodetector. J. Alloy. Compd. 732, 16–24 (2018)CrossRefGoogle Scholar
  13. 13.
    Y.T. Kwon, S.O. Kang, J.A. Cheon, Y. Song, J.J. Lee, Y.H. Choa, Fabrication of a Graphene/ZnO based pn junction device and its ultraviolet photoresponse properties. Appl. Surf. Sci. 415, 2–7 (2017)CrossRefGoogle Scholar
  14. 14.
    P.S. Shewale, N.K. Lee, S.H. Lee, K.Y. Kang, Y.S. Yu, Ti doped ZnO thin film basedUV photodetector: fabrication and characterization. J. Alloy. Compd. 624, 251–257 (2015)CrossRefGoogle Scholar
  15. 15.
    H.S. Al-Salman, M.J. Abdullah, Fabrication and characterization of undoped andcobalt-dopedZnO Based UV photodetector prepared by RF-sputtering. J. Mater. Sci. Technol. 29, 1139–1145 (2013)CrossRefGoogle Scholar
  16. 16.
    R. Rajalakshmi, S. Angappane, Synthesis, characterization and photoresponsestudy of undoped and transition metal (Co, Ni, Mn) doped ZnO thin films. J. Mater. Sci. Eng. B 178, 1068–1075 (2013)CrossRefGoogle Scholar
  17. 17.
    Z. Banu Bahsi, A. Yavuz Oral, Effects of Mn and Cu doping on the microstructures andoptical properties of sol–gel derived ZnO thin films. Opt. Mater. 29, 672 (2007)CrossRefGoogle Scholar
  18. 18.
    A. Mezni, A. Mlayah, V. Serin, L.S. Smiri, Synthesis of hybrid Au–ZnO nanoparticles using a one pot polyol process. Mater. Chem. Phys. 147, 496–503 (2014)CrossRefGoogle Scholar
  19. 19.
    I.B. Elkamel, N. Hamdaoui, A. Mezni, R. Ajjel, L. Beji, High responsivity and 1/f noise of an ultraviolet photodetector based on Ni doped ZnO nanoparticles. RSC Adv. 8, 32333–32343 (2018)CrossRefGoogle Scholar
  20. 20.
    T. Ghosh, D. Basak, Highly enhanced ultraviolet photoresponse property in Cudoped and Cu–Li co-doped ZnO films. J. Phys. D Appl. Phys. 42, 1453045 (2009)Google Scholar
  21. 21.
    F.M. Li, C.T. Zhu, S.Y. Ma, A.M. Sun, H.S. Song, X.B. Li, X. Wang, Investigation of the blue–green emission and UV photosensitivity of Cu-doped ZnO films. Mater. Sci. Semicond. Process. 16, 1079–1085 (2013)CrossRefGoogle Scholar
  22. 22.
    M. Mittal, M. Sharma, O.P. Pandey, UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method. Sol. Energy 110, 386–397 (2014)CrossRefGoogle Scholar
  23. 23.
    J.R. Torres-Hernández, E. Ramírez-Morales, L. Rojas-Blanco, J. Pantoja-Enriquez, G. Oskam, F. Paraguay-Delgado, G. Pérez-Hernández, Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu. Mater. Sci. Semicond. Process. 37, 87–92 (2015)CrossRefGoogle Scholar
  24. 24.
    P.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Boston, 1978)Google Scholar
  25. 25.
    R. Javed, M. Usman, B. Yücesan, M. Zia, E. Gürel, Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudianaBertoni. Plant Physiol. Biochem. 110, 94–99 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Fabbiyola, V. Sailaja, L.J. Kennedy, M. Bououdina, J.J. Vijaya, Optical and magnetic properties of Ni-doped ZnO nanoparticles. J. Alloy. Compd. 694, 522–531 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 143, 304–308 (2015)CrossRefGoogle Scholar
  28. 28.
    A.C. Janaki, E. Sailatha, S. Gunasekaran, Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 144, 17–22 (2015)CrossRefGoogle Scholar
  29. 29.
    V. Shanmugam, K.S. Jeyaperumal, Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity. Appl. Surf. Sci. 449, 617–630 (2018)CrossRefGoogle Scholar
  30. 30.
    K.P. Raj, K. Sadayandi, Effect of temperature on structural, optical and photoluminescence studies on ZnO nanoparticles synthesized by the standard co-precipitation method. Phys. B 487, 1–7 (2016)CrossRefGoogle Scholar
  31. 31.
    D. Verma, A.K. Kole, P. Kumbhakar, Red shift of the band-edge photoluminescence emission and effects of annealing and capping agent on structural and optical properties of ZnO nanoparticles. J. Alloy. Compd. 625, 122–130 (2015)CrossRefGoogle Scholar
  32. 32.
    S.A. Vanalakar, S.S. Mali, M.P. Suryawanshi, N.L. Tarwal, P.R. Jadhav, G.L. Agawane, J.Y. Kim, Photoluminescence quenching of a CdS nanoparticles/ZnO nanorods core–shell heterogeneous film and its improved photovoltaic performance. Opt. Mater. 37, 766–772 (2014)CrossRefGoogle Scholar
  33. 33.
    A.N. Mallika, A.R. Reddy, K.S. Babu, C. Sujatha, K.V. Reddy, Structural and photoluminescence properties of Mg substituted ZnO nanoparticles. Opt. Mater. 36, 879–884 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Ashokkumar, S. Muthukumaran, Effect of Ni doping on electrical, photoluminescence and magnetic behavior of Cu doped ZnO nanoparticles. J. Lumin. 162, 97–103 (2015)CrossRefGoogle Scholar
  35. 35.
    S.K. Shahi, N. Kaur, J.S. Shahi, V. Singh, Investigation of morphologies, photoluminescence and photocatalytic properties of ZnO nanostructures fabricated using different basic ionic liquids. J. Environ. Chem. Eng. 6, 3718 (2016)CrossRefGoogle Scholar
  36. 36.
    C. Abinaya, M. Marikkannan, M. Manikandan, J. Mayandi, P. Suresh, V. Shanmugaiah, J.M. Pearce, Structural and optical characterization and efficacy of hydrothermal synthesized Cu and Ag doped zinc oxide nanoplate bactericides. Mater. Chem. Phys. 184, 172–182 (2016)CrossRefGoogle Scholar
  37. 37.
    J. Xia, X. Huang, L.Z. Liu, M. Wang, L. Wang, B. Huang, D.D. Zhu, J.J. Li, C.Z. Gu, X.M. Meng, Nanoscale 6, 8949 (2014)CrossRefGoogle Scholar
  38. 38.
    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotechnol. 8, 497 (2013)CrossRefGoogle Scholar
  39. 39.
    S.R. Tamalampudi, Y.Y. Lu, U.R. Kumar, R. Sankar, C.D. Liao, B.K. Moorthy, C.H. Cheng, F.C. Chou, Y.T. Chen, Nano Lett. 14, 2800 (2014)CrossRefGoogle Scholar
  40. 40.
    S.L. Zhao, H.A. Wang, Y. Zhou, L. Liao, Y. Jiang, X. Yang, G.C. Chen, M. Lin, Y. Wang, H.L. Peng, Z.F. Liu, Nano Res. 8, 288 (2015)CrossRefGoogle Scholar
  41. 41.
    C. Wang, S.J. Chang, Y.K. Su, Y. Chiou, C. Chang, T. Lin, H. Liu, J.J. Tang, Semicond. Sci. Technol. 20, 485 (2005)CrossRefGoogle Scholar
  42. 42.
    S.I. Inamdar, V.V. Ganbavle, K.Y. Rajpure, ZnO based visible–blind UV photodetector by spray pyrolysis. Superlattices Microstruct. 76, 253–263 (2014)CrossRefGoogle Scholar
  43. 43.
    M.S. Mahdi, K. Ibrahim, N.M. Ahmed, A. Hmood, F.I. Mustafa, S.A. Azzez, M. Bououdina, High performance and low-cost UV–Visible–NIR photodetector based on tin sulphide nanostructures. J. Alloy. Compd. 735, 2256–2262 (2018)CrossRefGoogle Scholar
  44. 44.
    Y. Wei, Z. Ren, A. Zhang, P. Mao, H. Li, X. Zhong, J. Wang, Hybrid organic/PbS quantum dot bilayer photodetector with low dark current and high detectivity. Adv. Funct. Mater. 28(11), 1706690 (2018)CrossRefGoogle Scholar
  45. 45.
    Z. Ke, Z. Yang, M. Wang, M. Cao, Z. Sun, J. Shao, Low temperature annealed ZnO film UV photodetector with fast photoresponse. Sens. Actuators, A 253, 173–180 (2017)CrossRefGoogle Scholar
  46. 46.
    F.H. Alsultany, Z. Hassan, N.M. Ahmed, N.G. Elafadill, H.R. Abd, Effects of ZnO seed layer thickness on catalyst-free growth of ZnO nanostructures for enhanced UV photoresponse. Opt. Laser Technol. 98, 344–353 (2018)CrossRefGoogle Scholar
  47. 47.
    A.S. Al-Asadi, L.A. Henley, S. Ghosh, A. Quetz, I. Dubenko, N. Pradhan, M. Terrones, Fabrication and characterization of ultraviolet photosensors from ZnO nanowires prepared using chemical bath deposition method. J. Appl. Phys. 119(8), 084306 (2016)CrossRefGoogle Scholar
  48. 48.
    R. Sugumar, S. Angappane, Influence of substrate heating and annealing on the properties and photoresponse of manganese doped zinc oxide thin films. Superlattices Microstruct. 110, 57–67 (2017)CrossRefGoogle Scholar
  49. 49.
    K.H. Kim, K.C. Park, D.Y. Ma, J. Appl. Phys. 81, 7764 (1997)CrossRefGoogle Scholar
  50. 50.
    S. Park, S. Kim, G.J. Sun, D.B. Byeon, S.K. Hyun, W.I. Lee, C. Lee, ZnO-core/ZnSe-shell nanowire UV photodetector. J. Alloy. Compd. 658, 459–464 (2016)CrossRefGoogle Scholar
  51. 51.
    K. Singh, I. Rawal, R. Punia, R. Dhar, X-ray photoelectron spectroscopy investigations of band offsets in Ga0. 02Zn0. 98O/ZnO heterojunction for UV photodetectors. J. Appl. Phys. 122(15), 155301 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire des Energies et des Matériaux, LabEM-LR11ES34, Ecole Supérieure des Sciences et de la TechnologieUniversité de SousseHammam SousseTunisia
  2. 2.Institut Supérieur des Technologies de l’Informatique et de la CommunicationUniversité de SousseHammam SousseTunisia
  3. 3.Unite de recherche “Synthèse et Structure de Nanomatériaux” UR11ES30, Faculté des Sciences de BizerteUniversité de CarthageJarzounaTunisia
  4. 4.Département de physique, Collège des sciences et des arts d’Ar RassUniversité QassimAr RassSaudi Arabia

Personalised recommendations