Advertisement

Role of surface ligands on CdSe/CdS QDs in affecting the charge separation and photocatalytic behavior in reducing the graphene oxide

  • Xiangxin Xue
  • Lei Chen
  • Cuimei Zhao
  • Hairui Wang
  • Ping Nie
  • Limin ChangEmail author
Article
  • 12 Downloads

Abstract

In this paper, the photocatalytic behavior of CdSe/CdS quantum dots (QDs) in reducing the graphene oxide (GO) with different surface ligands was investigated. Here, three surface ligands of different functional groups (oleic acid, poly (acrylic acid polymers) and S2−) were selected to study the influence of surface ligands on photocatalytic behavior of the CdSe/CdS QDs. Meanwhile, the obtained samples can be used as photocatalyst, and the photocatalytic activity was evaluated by photodegrading a methylene blue solution. It turned out that the QDs–S2−–GO sample showed the highest photocatalytic activity under visible-light irradiation. Different surface ligand has different influence on the charge separation efficiency, which has different influence on photocatalytic behavior. The results show that the photocatalytic behavior is highly dependent on the electron attracting ability of the surface ligands on the CdSe/CdS QDs. Finally, a possible photocatalytic mechanism is proposed.

Notes

Acknowledgments

This study was financially supported by the Development Program of Science and Technology of Jilin Province (Grant No. 20170520134JH); the project of Jilin Province Department of Education (Grant No. JJKH20191016KJ).

Supplementary material

10854_2019_1266_MOESM1_ESM.docx (98 kb)
Supplementary material 1 (DOCX 98 kb)

References

  1. 1.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  2. 2.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)CrossRefGoogle Scholar
  3. 3.
    I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 49, 1 (2004)CrossRefGoogle Scholar
  4. 4.
    H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Adv. Mater. 24, 229 (2012)CrossRefGoogle Scholar
  5. 5.
    Y. Xu, M.A.A. Schoonen, Am. Mineral. 85, 543 (2000)CrossRefGoogle Scholar
  6. 6.
    C.S. Turchi, D.F. Ollis, J. Catal. 122, 178 (1990)CrossRefGoogle Scholar
  7. 7.
    C.Z. Luo, X.H. Ren, Z.G. Dai, Y.P. Zhang, X. Qi, C.X. Pan, Acs Appl. Mater. Inter. 9, 23265 (2017)CrossRefGoogle Scholar
  8. 8.
    S.J. Yu, A.J. Wilson, G. Kumari, X.Q. Zhang, P.K. Jain, Acs Energy Lett. 2, 2058 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, J. Electron. Mater. 47, 3757 (2018)CrossRefGoogle Scholar
  10. 10.
    S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci.: Mater. Electron. 28, 16459 (2017)Google Scholar
  11. 11.
    H. Kooshki, A. Sobhani-Nasab, M. Eghbali-Arani, F. Ahmadi, V. Ameri, M. Rahimi-Nasrabadi, Sep. Purif. Technol. 211, 873 (2019)CrossRefGoogle Scholar
  12. 12.
    F. Sedighi, M. Esmaeili-Zare, A. Sobhani-Nasab, M. Behpour, J. Mater. Sci.: Mater. Electron. 29, 13737 (2018)Google Scholar
  13. 13.
    A. Sobhani-Nasab, M. Behpour, J. Mater. Sci.: Mater. Electron. 27, 11946 (2016)Google Scholar
  14. 14.
    A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowsk, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Mater. Lett. 238, 159 (2019)CrossRefGoogle Scholar
  15. 15.
    A. Sobhani-Nasab, M. Rangraz-Jeddy, A. Avanes, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 9552 (2015)Google Scholar
  16. 16.
    S.D. Sun, P.J. Li, S.H. Liang, Z.M. Yang, Nanoscale 9, 11357 (2017)CrossRefGoogle Scholar
  17. 17.
    S. Kaushal, S.K. Mittal, P. Singh, Orient. J. Chem. 33, 1726 (2017)CrossRefGoogle Scholar
  18. 18.
    A. Piyadasa, S.B. Wang, P.X. Gao, Semicond. Sci. Technol. 32, 073001 (2017)CrossRefGoogle Scholar
  19. 19.
    Y.K. Abdel-Monem, J. Mater. Sci.: Mater. Electron. 27, 5723 (2016)Google Scholar
  20. 20.
    Y.K. Abdel-Monem, S.M. Emam, H.M.Y. Okda, J. Mater. Sci.: Mater. Electron. 28, 2923 (2017)Google Scholar
  21. 21.
    F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer, M.O. Amin, M. Madkour, Sci. Rep. UK 8, 7104 (2018)CrossRefGoogle Scholar
  22. 22.
    A. Bumajdad, M. Madkour, Y. Abdel-Moneam, M. El-Kemary, J. Mater. Sci. 49, 1743 (2014)CrossRefGoogle Scholar
  23. 23.
    M. Madkour, Y.K. Abdel-Monem, F. Al Sagheer, Ind. Eng. Chem. Res. 55, 12733 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Kagkoura, T. Skaltsas, N. Tagmatarchis, Chem. Eur. J. 23, 12967 (2017)CrossRefGoogle Scholar
  25. 25.
    Y. Nosaka, A.Y. Nosaka, Chem. Rev. 117, 11302 (2017)CrossRefGoogle Scholar
  26. 26.
    X. Zheng, Z.P. Shen, L. Shi, R. Cheng, D.H. Yuan, Catalysts 7, 224 (2017)CrossRefGoogle Scholar
  27. 27.
    Q.X. Peng, D. Xue, S.Z. Zhan, C.L. Ni, Appl. Catal. B 219, 353 (2017)CrossRefGoogle Scholar
  28. 28.
    W.T. Yao, S.H. Yu, S.J. Liu, J.P. Chen, X.M. Liu, F.Q. Li, J. Phys. Chem. B 110, 11704 (2006)CrossRefGoogle Scholar
  29. 29.
    Z.J. Li, X.B. Li, J.J. Wang, S. Yu, C.B. Li, C.H. Tung, L.Z. Wu, Energy Environ. Sci. 6, 465 (2013)CrossRefGoogle Scholar
  30. 30.
    M. Kaur, C.M. Nagaraja, RSC Adv. 6, S6790 (2016)Google Scholar
  31. 31.
    W. Jiang, Z.M. Wu, X.N. Yue, S.J. Yuan, H.F. Lu, B. Liang, RSC Adv. 5, 24064 (2015)CrossRefGoogle Scholar
  32. 32.
    P. Wang, M.M. Wang, J. Zhang, C.P. Li, X.L. Xu, Y.D. Jin, ACS Appl. Mater. Interface 9, 35712 (2017)CrossRefGoogle Scholar
  33. 33.
    F. Qiu, Z.J. Han, J.J. Peterson, M.Y. Odoi, K.L. Sowers, T.D. Krauss, Nano Lett. 16, 5347 (2016)CrossRefGoogle Scholar
  34. 34.
    S. Azimi, A. Nezamzadeh-Ejhieh, J Mol. Catal. A 408, 152 (2015)CrossRefGoogle Scholar
  35. 35.
    Y.S. Li, Z.Y. Song, J.T. Qin, H.T. Huang, Y. Han, Chinese. J. Anal. Chem. 44, 61 (2016)Google Scholar
  36. 36.
    A. Nag, M.V. Kovalenko, J.-S. Lee, W. Liu, B. Spokoyny, D.V. Talapin, J. Am. Chem. Soc. 133, 10612 (2011)CrossRefGoogle Scholar
  37. 37.
    A. Nag, D.S. Chung, D.S. Dolzhnikov, N.M. Dimitrijevic, S. Chattopadhyay, T. Shibata, D.V. Talapin, J. Am. Chem. Soc. 134, 13604 (2012)CrossRefGoogle Scholar
  38. 38.
    M. Soreni-Harari, N. Yaacobi-Gross, D. Steiner, A. Aharoni, U. Banin, O. Millo, N. Tessler, Nano Lett. 8, 678 (2008)CrossRefGoogle Scholar
  39. 39.
    E. Zillner, S. Fengler, P. Niyamakom, F. Rauscher, K. Köhler, T. Dittrich, J. Phys. Chem. C 116, 16747 (2012)CrossRefGoogle Scholar
  40. 40.
    D.A. Hines, P.V. Kamat, J. Phys. Chem. C 117, 14418 (2013)CrossRefGoogle Scholar
  41. 41.
    B.P. Bloom, L.-B. Zhao, Y. Wang, D.H. Waldeck, R. Liu, P. Zhang, D.N. Beratan, J. Phys. Chem. C 117, 22401 (2013)CrossRefGoogle Scholar
  42. 42.
    A. Zhang, C. Dong, H. Liu, J. Ren, J. Phys. Chem. C 117, 24592 (2013)CrossRefGoogle Scholar
  43. 43.
    P.R. Brown, D. Kim, R.R. Lunt, N. Zhao, M.G. Bawendi, J.C. Grossman, V. Bulović, ACS Nano 8, 5863 (2014)CrossRefGoogle Scholar
  44. 44.
    J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X. Peng, J. Am. Chem. Soc. 125, 12567 (2003)CrossRefGoogle Scholar
  45. 45.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  46. 46.
    P. Wang, J. Zhang, H.L. He, X.T. Xua, Y.D. Jin, Nanoscale 6, 13470 (2014)CrossRefGoogle Scholar
  47. 47.
    J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Chem. Commun. (Camb.) 46, 1112 (2010)CrossRefGoogle Scholar
  48. 48.
    Z. Xu, J. Yu, Nanoscale 3, 3138 (2011)CrossRefGoogle Scholar
  49. 49.
    J. Yu, G. Dai, B. Huang, J. Phys. Chem. C 113, 16394 (2009)CrossRefGoogle Scholar
  50. 50.
    P. Wang, Z.J. Guan, Q.Y. Li, J.J. Yang, J. Mater. Sci. 53, 774 (2018)CrossRefGoogle Scholar
  51. 51.
    Y. Ben-Shahar, F. Scotognella, N. Waiskopf, I. Kriegel, S. Dal Conte, G. Cerullo, U. Banin, Small 11, 462 (2015)CrossRefGoogle Scholar
  52. 52.
    Y.B. Du, X.Y. Xu, L. Lin, M.Y. Ge, D.N. He, J. Mater. Sci. 53, 385 (2018)CrossRefGoogle Scholar
  53. 53.
    F.S. Ghoreishi, V. Ahmadi, M. Samadpour, J. Power Sources 271, 195 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)Ministry of EducationChangchunChina

Personalised recommendations