Structural, opto-electronics and magnetic study of Fe/Si doped ZnO

  • Gaurav Bajpai
  • Sk. Riyajuddin
  • Kaushik Ghosh
  • Shubhra Bajpai
  • Dharma R. Basaula
  • Subhash Bhatt
  • Mahmud Khan
  • Shun-Wei Liu
  • Sajal Biring
  • Somaditya SenEmail author


Structural, opto-electronics and magnetic hysteresis properties have been studied of sol–gel synthesized Zn(0.96875)Si(0.03125)-xFexO (0 ≤ x ≤ 0.03125) nano-particles. The crystallites belong to a wurtzite P63mc space group. The ratio of Si:Fe is varied in these materials. Si4+ and Fe3+ both attract oxygen to the lattice. The excess oxygen content reduces oxygen vacancies and further creates oxygen interstitials. However, there is a limit of oxygen intake as space is used up when a larger Fe3+ ion substitutes a smaller Si4+ ion. Hence, with increasing Fe3+ content the amount of oxygen added to the lattice starts reducing firstly, due to the lesser charge and secondly due to the larger size of Fe3+. This trend results in optimized maxima of oxygen content and affects the lattice parameters, lattice strain, defect states thereby tuning bandgap and photoluminescent properties. Excluding the pure ZnO sample, all samples exhibit weak ferromagnetic interactions that enhance with increasing Fe content.



Authors thank Dr. Vipul Singh at IIT, Indore, for providing Photoluminescence Spectroscopy. We also thank Sophisticated Instrumentation Center (SIC), IIT Indore for Scanning Electron Microscopy and IIT Indore for funding the project. One of the authors (Dr. Sajal Biring) acknowledges financial support from the Ministry of Science and Technology (Grant Nos. 106-2221-E-131-027 and 107-2221-E-131 -029 -MY2). Dr. Kaushik Ghosh is thankful to DST, India for financial support under Nanomission (SR/NM/NS-91/2016) research funding scheme.

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.


  1. 1.
    Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morko, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  2. 2.
    K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 68, 403 (1998)CrossRefGoogle Scholar
  3. 3.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 79–83 (1996)CrossRefGoogle Scholar
  4. 4.
    S.A. Studenikin, M. Cocivera, Time-resolved luminescence and photoconductivity of polycrystalline ZnO films. J. Appl. Phys. 91, 5060 (2002)CrossRefGoogle Scholar
  5. 5.
    D.C. Look, Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 80, 383–387 (2001)CrossRefGoogle Scholar
  6. 6.
    Q.X. Zhao, P. Klason, M. Willander, H.M. Zhong, W. Lu, J.H. Yang, Deep-level emissions influenced by O and Zn implantations in ZnO. Appl. Phys. Lett. 87, 211912 (2005)CrossRefGoogle Scholar
  7. 7.
    P. Klason, T.M. Borseth, Q.X. Zhao, B.G. Svensson, A.Y. Kuznetsov, P.J. Bergman, M. Willander, Temperature dependence and decay times of zinc and oxygen vacancy related photoluminescence bands in zinc oxide. Solid State Commun. 145, 321 (2008)CrossRefGoogle Scholar
  8. 8.
    A.B. Djurisic, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen, S. Gwo, Green, yellow, and orange defect emission from ZnO nanostructures: influence of excitation wavelength. Appl. Phys. Lett. 88, 103107 (2006)CrossRefGoogle Scholar
  9. 9.
    S.A. Studenikin, N. Golego, M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84, 2287 (1998)CrossRefGoogle Scholar
  10. 10.
    R. Radoi, P. Fernández, J. Piqueras, M.S. Wiggins, J. Solis, Luminescence properties of mechanically milled and laser irradiated ZnO. Nanotechnology 14, 794 (2003)CrossRefGoogle Scholar
  11. 11.
    V. Kumar, H.C. Swart, O.M. Ntwaeaborwa, R.E. Kroon, J.J. Terblans, S.K.K. Shaat, A. Yousif, M.M. Duvenhage, Origin of the red emission in zinc oxide nanophosphors. Mater. Lett. 15, 57 (2013)CrossRefGoogle Scholar
  12. 12.
    T.T. Loan, N.N. Long, L.H. Ha, Photoluminescence properties of Co-doped ZnO nanorods synthesized by hydrothermal method. J. Phys. D 42, 065412 (2009)CrossRefGoogle Scholar
  13. 13.
    F.C. Romeiro, J.Z. Marinho, A.C.A. Silva, N.F. Cano, N.O. Dantas, R.C. Lima, Photoluminescence and magnetism in Mn2+-doped ZnO nanostructures grown rapidly by the microwave hydrothermal method. J. Phys. Chem. C 117, 26222 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Zhu, J. Iqbal, H. Xu, D. Yu, Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process. J. Chem. Phys. 129, 124713 (2008)CrossRefGoogle Scholar
  15. 15.
    T. Srivastava, S. Kumar, P. Shirage, S. Sen, Reduction of O2—related defect states related to increased bandgap in Si4+ substituted ZnO. Scr. Mater. 124, 11 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, An oxide-diluted magnetic semiconductor: Mn-doped ZnO. Appl. Phys. Lett. 75, 3366 (1999)CrossRefGoogle Scholar
  17. 17.
    S.W. Jung, S.-J. An, G.-C. Yi, Ferromagnetic properties of Zn1−xMnxO epitaxial thin films. Appl. Phys. Lett. 80, 4561 (2002)CrossRefGoogle Scholar
  18. 18.
    R. Vishwanatha, S. Sapra, S.S. Gupta, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sarma, Synthesis and characterization of Mn-Doped ZnO nanocrystals. J. Phys. Chem. B 108, 6303 (2004)CrossRefGoogle Scholar
  19. 19.
    K.J. Kim, Y.R. Park, Spectroscopic ellipsometry study of optical transitions in Zn 1−x CoxO alloys. Appl. Phys. Lett. 81, 1420 (2002)CrossRefGoogle Scholar
  20. 20.
    M. Boulouddeine, N. Viart, S. Colis, A. Dinia, Bulk Zn1−xCoxO magnetic semiconductors prepared by hydrothermal technique. Chem. Phys. Lett. 397, 73 (2004)CrossRefGoogle Scholar
  21. 21.
    D. Shimono, S. Tanaka, T. Torikai, T. Watari, M. Muranoa, Preparation of transparent and conductive ZnO films using a chemical solution deposition process. J. Ceram. Process. Res. 2, 184 (2001)Google Scholar
  22. 22.
    A. Sahai, Y. Kumar, V. Agarwal, S.F. Olive-Méndez, N. Goswami, Doping concentration driven morphological evolution of Fe doped ZnO nanostructures. J. Appl. Phys. 116, 164315 (2014)CrossRefGoogle Scholar
  23. 23.
    Q. Wang, Q. Sun, P. Jena, Y. Kawazoe, Magnetic properties of transition-metal-doped Zn1-xTxO (T = Cr, Mn, Fe Co, and Ni) thin films with and without intrinsic defects: a density functional study. Phys. Rev. B 79, 115407 (2009)CrossRefGoogle Scholar
  24. 24.
    A.Y. Polyakov, A.V. Govorkov, N.B. Smirnov, N.V. Pashkova, S.J. Pearton, K. Ip, R.M. Frazier, C.R. Abernathy, D.P. Norton, J.M. Zavada, R.G. Wilson, Optical and magnetic properties of ZnO bulk crystals implanted with Cr and Fe. Mater. Sci. Semicond. Process. 7, 77–81 (2004)CrossRefGoogle Scholar
  25. 25.
    K. Potzger, S.Q. Zhou, H. Reuther, A. Mucklich, F. Eichhorn, N. Schell, W. Skorupa, M. Helm, J. Fassbender, Fe implanted ferromagnetic ZnO. Appl. Phys. Lett. 88, 052508 (2006)CrossRefGoogle Scholar
  26. 26.
    S.J. Han, J.W. Song, C.H. Yang, S.H. Park, J.H. Park, Y.H. Jeong, A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu. Appl. Phys. Lett. 81, 4212 (2002)CrossRefGoogle Scholar
  27. 27.
    J.H. Shim, T. Hwang, S. Lee, Origin of ferromagnetism in Fe- and Cu-codoped ZnO. Appl. Phys. Lett. 86, 082503 (2005)CrossRefGoogle Scholar
  28. 28.
    M.H.F. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A.R. Raju, C. Rout, U.V. Waghmare, First principles based design and experimental evidence for a ZnO-based ferromagnet at room temperature. Phys. Rev. Lett. 94, 187204 (2005)CrossRefGoogle Scholar
  29. 29.
    Y.R. Park, K.J. Kim, S.-L. Choi, J.H. Lee, H.J. Lee, C.S. Kim, J.Y. Park, Ferromagnetism in 57Fe-doped cupric oxide. Phys. Status Solidi B 244, 4578–4581 (2007)CrossRefGoogle Scholar
  30. 30.
    N. Tiwari, S. Doke, A. Lohar, S. Mahamuni, C. Kamal, A. Chakrabarti, R.J. Choudhary, P. Mondal, S.N. Jha, D. Bhattacharyya, Local structure investigation of (Co, Cu) co-doped ZnO nanocrystals and its correlation with magnetic properties. J. Phys. Chem. Solids 90, 100–113 (2016)CrossRefGoogle Scholar
  31. 31.
    K. Sato, H. Katayama-Yoshida, Stabilization of ferromagnetic states by electron doping in Fe-, Co- or Ni-doped ZnO. Jpn. J. Appl. Phys. 40, 334–336 (2001)CrossRefGoogle Scholar
  32. 32.
    T. Srivastava, A. Sadanandan, G. Bajpai, S. Tiwari, R. Amin, M. Nasir, S. Kumar, P.M. Shirage, S. Biring, S. Sen, Zn1-xSixO: improved optical transmission and electrical conductivity. Ceram. Int. 43, 5668–5673 (2017)CrossRefGoogle Scholar
  33. 33.
    W. Niu, H. Zhu, X. Wang, J. Ye, F. Song, J. Zhou, S. Gu, Y. Shi, Y. Xu, R. Zhang, Identification of defect-related emissions in ZnO hybrid materials. Appl. Phys. Lett. 107, 021902 (2015)CrossRefGoogle Scholar
  34. 34.
  35. 35.
    J.T. Wolan, G.B. Hoflund, Surface characterization study of AgF and AgF2 powders using XPS and ISS. Appl. Surf. Sci. 125, 251–258 (1998)CrossRefGoogle Scholar
  36. 36.
    B. Vincent Crist, Handbook of The Elements and Native Oxides (XPS International, Inc., 1999), Vols. 1 and 2Google Scholar
  37. 37.
    C.L. Chun, L.T. Zong, Y.L. Kuang, Y.H. Chih, S.H. Cheng, Unipolar resistive switching behavior of Pt/Li × Zn1 × O/Pt resistive random-access memory devices controlled by various defect types. Appl. Phys. Lett. 101, 203501 (2012)CrossRefGoogle Scholar
  38. 38.
    Z. Yang, Z. Ye, Z. Xu, B. Zhao, Effect of the morphology on the optical properties of ZnO nanostructures. Phys. E 42, 116–119 (2009)CrossRefGoogle Scholar
  39. 39.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Parts-A and B (Wiley, New York, 1997)Google Scholar
  40. 40.
    M. Arshad, A. Azam, A.S. Ahmea, S. Mollah, A.H. Naqvi, Effect of Co substitution on the structural and optical properties of ZnO nanoparticles synthesized by sol–gel route. J. Alloys Compd. 509, 8378–8381 (2011)CrossRefGoogle Scholar
  41. 41.
    C.J. Conga, J.H. Honga, K.L. Zhanga, Effect of atmosphere on the magnetic properties of the Co-doped ZnO magnetic semiconductors. Mater. Chem. Phys. 113, 435–440 (2009)CrossRefGoogle Scholar
  42. 42.
    K. Yosida, Magnetic properties of Cu-Mn alloys. Phys. Rev. 106, 893–898 (1957)CrossRefGoogle Scholar
  43. 43.
    H. Kumagai, Y. Oka, S. Kawata, M. Ohba, K. Inoue, M. Kurmoo, H. Okawa, Hydrothermal synthesis, crystal structure and characterization of a new hexanuclear cobalt(II) complex comprised of octahedral and tetrahedral cobalt ions. Polyhedron 22, 1917–1920 (2003)CrossRefGoogle Scholar
  44. 44.
    R.N. Aljawfi, S. Mollah, Properties of Co/Ni codoped ZnO based nanocrystalline DMS. J. Magn. Magn. Mater. 323, 3126–3132 (2011)CrossRefGoogle Scholar
  45. 45.
    B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Evaluation of the Tauc method for optical absorption edge determination: ZnO thinfilms as a model system. Phys. Status Solidi B 252, 1700–1710 (2015)CrossRefGoogle Scholar
  46. 46.
    N. Ghobadi, Band gap determination using absorption spectrum fitting procedure. Int. Nano Lett. 3, 2 (2013)CrossRefGoogle Scholar
  47. 47.
    S.J. Ikhmayies, R.N. Ahmad-Bitar, A study of the optical bandgap energy and Urbach tail of spray-deposited CdS: in thin films. J. Mater. Res. Technol. 2, 221–227 (2013)CrossRefGoogle Scholar
  48. 48.
    T. Srivastava, E.G. Rini, A. Joshi, P.M. Shirage, S. Sen, Structural distortion and bandgap increment in nanocrystalline wurtzite Si substituted ZnO. J. Nanosci. Nanotechnol. 17, 1356 (2017)CrossRefGoogle Scholar
  49. 49.
    J.J. Beltrán, C.A. Barrero, A. Punnoose, Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 17, 15284–15296 (2015)CrossRefGoogle Scholar
  50. 50.
    B. Cao, W. Cai, H. Zeng, Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Appl. Phys. Lett. 88, 161101 (2006)CrossRefGoogle Scholar
  51. 51.
    B. Lin, Z. Fu, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943–945 (2001)CrossRefGoogle Scholar
  52. 52.
    C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 105, 013502 (2009)CrossRefGoogle Scholar
  53. 53.
    G. Bajpai, T. Srivastava, S. Kumar, S. Sen, Enhanced red emission from Fe/Si co-doped ZnO nano-particles. Scr. Mater. 144, 27–30 (2018)CrossRefGoogle Scholar
  54. 54.
    G. Bajpai, T. Srivastava, S. Kumar, P.M. Shirage, S. Sen, Structure, electronic and photoluminescence study of Si doped ZnO nano-particles. IOP Conf. Ser. 149, 012186 (2016)CrossRefGoogle Scholar
  55. 55.
    A. Kaminski, S.D. Sarma, Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002)CrossRefGoogle Scholar
  56. 56.
    L. Bergqvist, O. Eriksson, J. Kudrnovský, V. Drchal, P. Korzhavyi, I. Turek, Magnetic percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 93, 137202 (2004)CrossRefGoogle Scholar
  57. 57.
    L. Hedin, B.I. Lundqvist, Explicit local exchange-correlation potentials. J. Phys. C 4, 2064–2083 (1971)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gaurav Bajpai
    • 1
  • Sk. Riyajuddin
    • 3
  • Kaushik Ghosh
    • 3
  • Shubhra Bajpai
    • 4
  • Dharma R. Basaula
    • 5
  • Subhash Bhatt
    • 5
  • Mahmud Khan
    • 5
  • Shun-Wei Liu
    • 6
  • Sajal Biring
    • 6
  • Somaditya Sen
    • 1
    • 2
    • 6
    Email author
  1. 1.Metallurgical Engineering and Material SciencesIndian Institute of Technology IndoreIndoreIndia
  2. 2.Department of PhysicsIndian Institute of Technology IndoreIndoreIndia
  3. 3.Institute of Nano Science and TechnologyMohaliIndia
  4. 4.CSIR-Institute of Minerals & Materials TechnologyBhubaneswarIndia
  5. 5.Department of PhysicsMiami UniversityOxfordUSA
  6. 6.Department of Electronic Engineering and Organic Electronics Research CenterMing Chi University of TechnologyNew Taipei CityTaiwan

Personalised recommendations