Self-cooling device based on thermomagnetic effect of MnxZn1−xFe2O4 (x = 0.3, 0.4, 0.5, 0.6, 0.7)/ferrofluid

  • Lakshita Phor
  • Vinod KumarEmail author


This paper aims at studying the effect of Mn2+ in MnxZn1−xFe2O4 (x = 0.3, 0.4, 0.5, 0.6, 0.7) ferrite nanoparticles (NPs) and ferrofluid (FF) prepared by chemical coprecipitation method. Structural studies were carried out using X-ray diffraction, fourier transform infra-red spectroscopy and morphological using high-resolution transmission electron microscopy. A vibrating sample magnetometer and electron paramagnetic resonance were employed to study the magnetic properties of prepared samples. It was observed that with increase in Mn content from x = 0.3 to 0.7, maximum magnetization showed increasing trend from 29.24 to 46.66 emu/g (at 2 T) with coercivity and retentivity almost equals to zero and Curie temperature from 380 to 522 K. A practical design of self-regulating cooling device has been constructed employing the synthesized FF as coolant. The device makes use of the dissipated heat and magnet to regulate the fluid flow in the loop exploiting the thermo-magnetic property of FF and transferring heat from heat load to sink. The device is self-powered, self-cooling, inexpensive and easy to maintain. By means of experiments performed, role of temperature of heat load, volume fraction of NPs and magnetic field strength has also been investigated and discussed.



  1. 1.
    B. Wang, X. Chu, E. Li, L. Li, Simulations and analysis of a piezoelectric micropump. Ultrasonics 44, 643–646 (2006)CrossRefGoogle Scholar
  2. 2.
    A. Wego, H. Glock, L. Pagel, S. Richter, Investigations on thermo-pneumatic volume actuators based on PCB technology. Sens. Actuators A 93, 95–102 (2001)CrossRefGoogle Scholar
  3. 3.
    W.L. Benard, H.A. Kahn, H. Heuer, M.A. Huff, Thin-film shape-memory alloy actuated micropumps. J. Microelectromech. Syst. 7, 245–251 (1998)CrossRefGoogle Scholar
  4. 4.
    S. Odenbach, Ferrofluids (Springer, Berlin, 2002)CrossRefGoogle Scholar
  5. 5.
    V.G. Bashtovoy, B.M. Berkovsky, A.N. Vislovish, Introduction to Thermomechanics of Magnetic Fluids (Hemisphere Publishing Corp, Washington, 1988)Google Scholar
  6. 6.
    K. Raj, B. Moskowitz, R. Casciari, Advances in FF technology. J. Magnet. Magn. Mater. 149, 174–180 (1995)CrossRefGoogle Scholar
  7. 7.
    C. Tangthieng, B.A. Finlayson, J. Maulbetsch, T. Cader, Heat transfer enhancement in FFs subjected to steady magnetic fields. J. Magnet. Magn. Mater. 201, 252–255 (1999)CrossRefGoogle Scholar
  8. 8.
    A. Nethe, T. Schoppe, H. Stahlmann, FF driven actuator for a left ventrical assist device. J. Magnet. Magn. Mater. 201, 423–426 (1999)CrossRefGoogle Scholar
  9. 9.
    W. Lian, Y. Xuan, Q. Li, Characterization of miniature automatic energy transport devices based on thermomagnetic effect. Energy Convers. Manag. 50, 35–42 (2009)CrossRefGoogle Scholar
  10. 10.
    W. Lian, Y. Xuan, Q. Li, Design method of automatic energy transport devices based on the thermomagnetic effect of FFs. Int. J. Heat Mass Transf. 52, 5451–5458 (2009)CrossRefGoogle Scholar
  11. 11.
    Q. Li, W. Lian, H. Sun, Y. Xuan, Investigation on operational characteristics of a miniature automatic cooling device. Int. J. Heat Mass Transf. 51, 5033–5039 (2008)CrossRefGoogle Scholar
  12. 12.
    G.K. Moghaddam, R.D. Gould, S. Bhattacharya, in: ASME Proceedings, Fluids and Heat Transfer, Paper No. IMECE2012-87764, 2012, pp. 1441-1447Google Scholar
  13. 13.
    M. Bahiraei, M. Hangi, Automatic cooling by means of thermomagnetic phenomenon of magnetic nanofluids in a toroidal loop. Appl. Therm. Eng. 107, 700–708 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Petit, Y. Avenas, A. Kedous-Lebouc, W. Cherief, E. Rullière, Experimental study of a static system based on a magneto-thermal coupling in ferrofluids. Int. J. Refrig. 37, 201–208 (2014)CrossRefGoogle Scholar
  15. 15.
    L. Zhou, Y. Xuan, Q. Li, W. Lian, A new miniaturized engine based on thermomagnetic effect of magnetic fluids. Front. Energy Power Eng. China 3(2), 160–166 (2009)CrossRefGoogle Scholar
  16. 16.
    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1978)Google Scholar
  17. 17.
    R.P. Patil, P.P. Hankare, K.M. Garadkar, R. Sasikala, Effect of sintering temperature on structural, magnetic properties of lithium chromium ferrite. J. Alloy. Compd. 523, 66 (2012)CrossRefGoogle Scholar
  18. 18.
    V. Kumar, A. Rana, M.S. Yadav, R.P. Pant, Size-induced effect on nano-crystalline CoFe2O4. J. Magn. Magn. Mater. 320, 1729 (2008)CrossRefGoogle Scholar
  19. 19.
    N. Kumari, V. Kumar, S.K. Singh, Studies on structural and electrical properties of Cr3+ substitued nano Zn-ferrites. J. Alloy. Compd. 622, 628 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Globus, H. Pascard, V. Cagan, Distance between magnetic ions and fundamental properties in ferrites. J. Phys. 38, 163 (1977)CrossRefGoogle Scholar
  21. 21.
    M.A. Amer, Infrared and X‐Ray Studies of the System Zn1—xCuxCr0.8Fe1.2O4. Phys. Status Solidi A 181, 539 (2000)CrossRefGoogle Scholar
  22. 22.
    R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, Mn-Zn ferrite NPs for FF preparation: study on thermal-magnetic properties. J. Magn. Magn. Mater. 298, 83–94 (2006)CrossRefGoogle Scholar
  23. 23.
    C. Murugesan, G. Chandrasekharan, Structural and magnetic properties of Mn1−xZnxFe2O4 ferrite nanoparticles. J. Supercond. Nov. Magn. 29, 2887–2897 (2016)CrossRefGoogle Scholar
  24. 24.
    N. Kumari, V. Kumar, S.K. Singh, Structural, dielectric and magnetic investigations on Al3+ substituted Zn ferrospinels. RSC Adv. 5, 37925–37934 (2015)CrossRefGoogle Scholar
  25. 25.
    R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)CrossRefGoogle Scholar
  26. 26.
    R. Iyer, R. Desai, R.V. Upadhyay, Low temperature synthesis of nanosized Mn1–xZnxFe2O4 ferrites and their characterizations. Bull. Mater. Sci. 32(2), 141–147 (2009)CrossRefGoogle Scholar
  27. 27.
    K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain, M. Shongwe, Infrared and structural studies of Mg1−xZnxFe2O4 ferrites. Phys. B 407, 795–804 (2012)CrossRefGoogle Scholar
  28. 28.
    M. Deepty, Ch. Srinivas, K.V. Babu, E.R. Kumar, S.S. Meena, C.L. Prajapat, N.K. Mohan, D.L. Sastry, Structural and electron spin resonance spectroscopic studies of MZF (x = 0.5,0.6,0.7) nanoferrites synthesized by sol-gel auto combustion method. J. Magn. Magn. Mater. 466, 60–68 (2018)CrossRefGoogle Scholar
  29. 29.
    M.K. Raju, FT-IR studies of Cu substituted Ni-Zn ferrites for structural and vibrational investigations. Chem. Sci. Trans. 4(1), 137–142 (2015)Google Scholar
  30. 30.
    P. Priyadarshini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Structural, spectroscopic and magnetic study of nanocrystalline Ni-Zn ferrites. Mater. Chem. Phys. 116, 207–213 (2009)CrossRefGoogle Scholar
  31. 31.
    M.M. Hessien, M.M. Rashad, K. El-Barawy, I.A. Ibrahim, Influence of manganese substitution and annealing temperature on the formation, microstructure and magnetic properties of Mn–Zn ferrites. J. Magn. Magn. Mater. 320, 1615–1621 (2008)CrossRefGoogle Scholar
  32. 32.
    S.S. Jadhav, S.E. Shrisath, S.M. Patange, K.M. Jadhav, Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrite. J. Appl. Phys. 108, 093920 (2010)CrossRefGoogle Scholar
  33. 33.
    R. Arulmurugan, G. Vaidyanathal, S. Sendhilnathan, B. Jeyadevan, Mn-Zn ferrite nanoparticles for ferrofluid preparation: study on thermal-magnetic properties. J. Magn. Magn. Mater. 298, 83–94 (2006)CrossRefGoogle Scholar
  34. 34.
    R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Surface spin disorder in ferrite nanoparticles. J. Appl. Phys. 81(8), 15 (1997)CrossRefGoogle Scholar
  35. 35.
    S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: role of Mn. J. Phys. Chem. Solids 91, 136–144 (2016)CrossRefGoogle Scholar
  36. 36.
    H. Montiel, G. Alvarez, M.P. Gutierrez, R. Zamorano, R. Valenzuela, Microwave absorption in Ni–Zn ferrites through the Curie transition. J. Alloy. Compd. 369, 141–143 (2004)CrossRefGoogle Scholar
  37. 37.
    P. Chu, D.L. Mills, R. Arias, Exchange/dipole collective spin-wave modes of ferromagnetic nanosphere arrays. Phys. Rev. B 73, 094405 (2006)CrossRefGoogle Scholar
  38. 38.
    L. Gama, E.P. Hernandez, D.R. Cornejo, A.A. Costa, S.M. Rezende, R.H.G.A. Kiminami, A.C.F.M. Costa, Magnetic and structural properties of nanosize Ni–Zn–Cr ferrite particles synthesized by combustion reaction. J. Magn. Magn. Mater. 317, 29–33 (2007)CrossRefGoogle Scholar
  39. 39.
    L.B. Zakiyah, E. Saion, N.M. Al-Hada, E. Gharibshahi, A. Salem, N. Soltani, S. Gene, Up-scalable synthesis of size controlled copper ferrite nanocrystals by thermal treatment method. Mater. Sci. Semicond. Proc. 40, 564–569 (2015)CrossRefGoogle Scholar
  40. 40.
    V. Chaudhary, Z. Wang, A. Ray, I. Sridhar, R.V. Ramanujan, Self Pumping magnetic cooling. J. Phys. D 50, 3 (2016)Google Scholar
  41. 41.
    Q. Li, Y. Xuan, J. Wang, Experimental investigations on transport properties of magnetic fluids. Exp. Therm. Fluid Sci. 30(2), 109–116 (2005)CrossRefGoogle Scholar
  42. 42.
    J. Eapen, R. Rusconi, R. Piazza, S. Yip, The classical nature of thermal conduction in nanofluids. J. Heat Transf. 132, 102402 (2010)CrossRefGoogle Scholar
  43. 43.
    J. Phillip, P.D. Shima, B. Raj, Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology 19(30), 305706 (2008)CrossRefGoogle Scholar
  44. 44.
    Y. Xuan, W. Lian, Electronic cooling using an automatic energy transport device based on thermomagnetic effect. Appl. Therm. Eng. 31, 1487–1494 (2011)CrossRefGoogle Scholar
  45. 45.
    J. Philips, P.D. Shima, B. Raj, Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Appl. Phys. Lett. 91, 203108 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsDeenbandhu Chhotu Ram University of Science and TechnologyMurthalIndia

Personalised recommendations