A novel orange–red emitting phosphor Sr2LuTaO6:Sm3+ for WLEDs

  • Chao Wei
  • Denghui XuEmail author
  • Zaifa YangEmail author
  • Jinling Li
  • Xiaobai Chen
  • Xiong Li
  • Jiayue Sun


A novel double perovskite tantalite orange–red light emitting Sr2LuTaO6:Sm3+ phosphor was synthesized by the solid state reaction. The phase, crystal structure, photoluminescence properties, thermal stability and decay curves were studied. The X-ray diffraction patterns indicated that the phosphor has a pure phase of cubic phase structure. Excited by near-ultraviolet light at 407 nm, the sample exhibited three sharp emission peaks at 564 nm, 600 nm, 645 nm corresponding to the 4G5/2 → 6HJ (J = 5/2, 7/2 and 9/2) transitions, respectively. The optimum doping concentration of Sm3+ ions was determined to be 5 mol% and the concentration quenching process comes from the energy transfer among nearest-neighbor ions. The as-prepared phosphors showed excellent thermal stability, the integral intensity at 423 K is about 91.10% of the initial intensity. The CIE chromaticity coordinates of Sr2LuTaO6:Sm3+ phosphors located in orange–red region. The results suggest that Sr2LuTaO6:Sm3+ phosphors have great potential application in white light-emitting diodes.



This work is supported by National Natural Science Foundation of China (No. 21576002 and 61705003), Scientific Research Common Program of Beijing Municipal Commission of Education (SQKM201710011009) and Scientific Research Ability Promotion Plan of Graduate Student of Beijing Technology and Business University.


  1. 1.
    J. Kovac, L. Peternai, O. Lengyel, Advanced light emitting diodes structures for optoelectronic applications. Thin Solid Films 433, 22–26 (2003)CrossRefGoogle Scholar
  2. 2.
    S. Nakamura, M. Senoh, T. Mukai, P-GaN/N-InGaN/N-GaNdouble-heterostructureblue-light-emitting diodes. Jpn. J. Appl. Phys. 32, L8–L11 (1993)CrossRefGoogle Scholar
  3. 3.
    Q. Ning, B. Quan, Y. Shi, Effect of alkali metal ions on the spectra of CaZn2(PO4)2: Sm3+ phosphor analyzed by J-O theory. J. Lumin. 206, 498–508 (2019)CrossRefGoogle Scholar
  4. 4.
    X. Min, Y. Sun, L. Kong, M. Guan, M. Fang, Liu Yg et al., Novel pyrochlore-type La2Zr2O7:Eu3+ red phosphors: synthesis, structural, luminescence properties and theoretical calculation. Dyes Pigments 157, 47–54 (2018)CrossRefGoogle Scholar
  5. 5.
    L. Sun, H. Guo, J. Liang, B. Li, X. Huang, Ca3Lu(GaO)3(BO3)4:Eu3+: a novel high-brightness and thermal-stable red-emitting phosphor for white LEDs. J. Lumin. 202, 403–408 (2018)CrossRefGoogle Scholar
  6. 6.
    D. Navami, R.B. Basavaraj, S.C. Sharma, B. Daruka Prasad, H. Nagabhushana, Rapid identification of latent fingerprints, security ink and WLED applications of CaZrO3:Eu3+fluorescent labelling agent fabricated via bio-template assisted combustion route. J. Alloys Compds. 762, 763–779 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Jayachandiran, G. Annadurai, S.M.M. Kennedy, Photoluminescence properties of red emitting Ba3Bi2(PO4)4:Eu3+ phosphor for WLEDs applications. J. Lumin. 201, 196–202 (2018)CrossRefGoogle Scholar
  8. 8.
    X. Huang, H. Guo, LiCa3MgV3O12:Sm3+: a new high-efficiency white-emitting phosphor. Ceram. Int. 44, 10340–10344 (2018)CrossRefGoogle Scholar
  9. 9.
    K. Jha, M. Jayasimhadri, Effective sensitization of Eu3+ and energy transfer in Sm3+/Eu3+ co-doped ZPBT glasses for CuPc based solar cell and w-LED applications. J. Lumin. 194, 102–107 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Kang, W. Lü, H. Wang, D. Ling, Near UV based LED fabricated with K2Ba3Si8O20:Eu2+ and energy transfer between Ce3+ and Eu2+. Mater. Res. Bull. 108, 46–50 (2018)CrossRefGoogle Scholar
  11. 11.
    J. He, Z. Gao, S. Liu, J.H. Jeong, R. Yu, B. Deng, New Eu3+-activated bismuthate tellurate LiSrBiTeO6 red-emitting phosphor for InGaN-based w-LEDs. J. Lumin. 202, 7–12 (2018)CrossRefGoogle Scholar
  12. 12.
    R. Cao, F. Zhang, H. Xiao, T. Chen, S. Guo, G. Zheng et al., Perovskite La2LiRO6:Mn4+ (R = Nb, Ta, Sb) phosphors: synthesis and luminescence properties. Inorg. Chim. Acta 483, 593–597 (2018)CrossRefGoogle Scholar
  13. 13.
    D. Yang, L. Liao, Q. Guo, L. Wang, L. Mei, H. Liu et al., A novel phosphor of Eu3+ -activated Na3GaF6: synthesis, structure, and luminescence properties. J. Lumin. 203, 391–395 (2018)CrossRefGoogle Scholar
  14. 14.
    X. Wu, W. Bai, O. Hai, Q. Ren, F. Lin, Y. Jiao, Crystal structure and luminescence properties of a novel red Ca3GdNa(PO4)3F:Eu3+ phosphor for white LEDs. Opt. Laser Technol. 107, 46–53 (2018)CrossRefGoogle Scholar
  15. 15.
    L. Wang, L. Yuan, Y. Xu, R. Zhou, B. Qu, N. Ding et al., Luminescent properties of La2LiTaO6:Mn4+ and its application as red emission LEDs phosphor. Appl. Phys. A 117, 1777–1783 (2014)CrossRefGoogle Scholar
  16. 16.
    Z. Zhang, C. Ma, R. Gautier, M.S. Molokeev, Q. Liu, Z. Xia, Structural confinement toward giant enhancement of red emission in Mn2+-based phosphors. Adv. Funct. Mater. 28, 1804150 (2018)CrossRefGoogle Scholar
  17. 17.
    Q. Li, Y. Yuan, T. Wei, Y. Li, Z. Chen, X. Jin et al., The origin of efficiency enhancement of inorganic/organic hybrid solar cells by robust samarium phosphate nanophosphors. Solar Energy Mater. Solar Cells 130, 426–434 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, C. Lin, H. Zheng, D. Sun, L. Li, B. Chen, Fluorescent and chromatic properties of visible-emitting phosphor KLa(MoO4)2:Sm3+. J. Alloys Compds. 559, 123–128 (2013)CrossRefGoogle Scholar
  19. 19.
    G. Li, W. Chen, Y. Wang, B. Duhan, Electronic structure, photoluminescence and phosphorescence properties in Sr2ScGaO5:Sm3+. Dyes Pigments 157, 259–266 (2018)CrossRefGoogle Scholar
  20. 20.
    C.-T. Chen, T.-J. Lin, M.S. Molokeev, W.-R. Liu, Synthesis, luminescent properties and theoretical calculations of novel orange-red-emitting Ca2Y8(SiO4)6O2:Sm3+ phosphors for white light-emitting diodes. Dyes Pigments 150, 121–129 (2018)CrossRefGoogle Scholar
  21. 21.
    Z. He, X.-Y. Sun, J.-X. Teng, X. Gu, Synthesis of Sm3+ doped SrAl2Si2O8 phosphors and improved emission intensity by Li+ doping. J. Mater. Sci. 29, 8153–8157 (2018)Google Scholar
  22. 22.
    J. Li, R. Pang, Z. Yu, L. Liu, H. Wu, H. Li et al., Preparation and luminescence properties of orange-red Ba3Y4O9:Sm3+ phosphors. J. Rare Earths 36, 680–684 (2018)CrossRefGoogle Scholar
  23. 23.
    G. Fan, Z. Tian, X. Wang, S. Tang, Y. Chen, High quantum efficiency red-emitting K2Gd(PO4)(WO4):Sm3+ phosphor: preparation, characterization and photoluminescence properties. J. Mater. Sci. 29, 17681–17688 (2018)Google Scholar
  24. 24.
    C. Niu, Y. Deng, Luminescence property of Sm3+ doped YNbO4 microcrystalline powder and their Judd-Ofelt analysis. J. Lumin. 204, 528–532 (2018)CrossRefGoogle Scholar
  25. 25.
    A. Mathur, P. Halappa, C. Shivakumara, Synthesis and characterization of Sm3+ activated La1−xGdxPO4 phosphors for white LEDs applications. J. Mater. Sci. 29, 19951–19964 (2018)Google Scholar
  26. 26.
    Z. Guo, Z. Zhu, X. Zhang, L. Zhou, Photoluminescent properties and Judd-Ofelt analysis of Eu3+-doped NaMg(PO3)3 red phosphor. J. Lumin. 202, 484–488 (2018)CrossRefGoogle Scholar
  27. 27.
    Q. Yang, G. Li, Y. Wei, H. Chai, Synthesis and photoluminescence properties of red-emitting NaLaMgWO6: Sm3+, Eu3+ phosphors for white LED applications. J. Lumin. 199, 323–330 (2018)CrossRefGoogle Scholar
  28. 28.
    M. Yan, G. Liu, J. Wen, Y. Wang, Blue-light-excited Eu3+/Sm3+ co-doped NaLa(MoO4)2 phosphors: synthesis, characterizations and red emission enhancement for WLEDs. Materials 11(7), 1090 (2018)CrossRefGoogle Scholar
  29. 29.
    B. Deng, Zhou C-S, H. Liu, J. Chen, Synthesis and optical properties of orange–red emitting Sm3+-activated Ca9LiGd2/3(PO4)7 phosphors. J. Mater. Sci. 29, 13731–13736 (2018)Google Scholar
  30. 30.
    J. Fan, W. Zhang, S. Dai, G. Yan, M. Deng, K. Qiu, Effect of charge compensators A+ (A = Li, Na and K) on luminescence enhancement of Ca3Sr3(PO4)4:Sm3+ orange-red phosphors. Ceram. Int. 44, 20028–20033 (2018)CrossRefGoogle Scholar
  31. 31.
    X.-Y. Sun, T.-T. Han, D.-L. Wu, F. Xiao, S.-L. Zhou, Q.-M. Yang et al., Investigation on luminescence properties of Dy3+-, Eu3+-doped, and Eu3+/Dy3+-codoped SrGd2O4 phosphors. J. Lumin. 204, 89–94 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Zhao, Y. Liu, S. Ma, D. Liu, K. Wang, Investigation of energy transfer mechanism and luminescence properties in Eu3+ and Sm3+ co-doped ZnWO4 phosphors. J. Lumin. 202, 57–64 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceBeijing Technology and Business UniversityBeijingPeople’s Republic of China
  2. 2.College of Physics and Electronic EngineeringQilu Normal UniversityJinanPeople’s Republic of China

Personalised recommendations