Advertisement

Engineered organic halide perovskite solar cells by incorporation of surface-manipulated graphenic nanosheets

  • Raana Sarvari
  • Samira AgbolaghiEmail author
  • Bakhshali MassoumiEmail author
Article
  • 29 Downloads

Abstract

The reduced graphene oxide (rGO) and rGO-g-poly(3-dodecyl thiophene) (PDDT) precursors were applied in the active layers of CH3NH3PbI3 perovskite solar cells. The rGO-g-PDDT modified perovskite devices represented the lower charge-transfer resistance (31.8 Ω cm2), higher short circuit current density (20.86 mA/cm2) and thus the larger performance (14.07%) compared with the pristine (74.2 Ω cm2, 17.90 mA/cm2, 11.10%) and rGO-incorporated devices (82.4 Ω cm2, 13.65 mA/cm2, 8.00%). The grafted-rGO components improved the cell characteristics, whereas the bared rGO nanostructures ruined them. The narrow distribution and thereby the high reproducibility and high performance in perovskite + rGO-g-PDDT photovoltaics were attributed to the improved morphology and enhanced grain size (190 nm vs 400 nm), progressed optical absorbance, and enhanced crystallinity of the CH3NH3PbI3 perovskites through the incorporation of rGO-g-PDDT modifiers.

Notes

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.

Supplementary material

10854_2019_1258_MOESM1_ESM.docx (599 kb)
Supplementary material 1 (DOCX 599 kb)

References

  1. 1.
    J. Weickert, R.B. Dunbar, H.C. Hesse, W. Wiedemann, L. Schmidt-Mende, Nanostructured organic and hybrid solar cells. Adv. Mater. 23(16), 1810–1828 (2011)CrossRefGoogle Scholar
  2. 2.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)CrossRefGoogle Scholar
  3. 3.
    J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6(6), 1739–1743 (2013)CrossRefGoogle Scholar
  4. 4.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Jiang, J. Wu, F. Lan, Q. Tao, D. Gao, G. Li, Enhancing the performance of planar organo-lead halide perovskite solar cells by using a mixed halide source. J. Mater. Chem. A 3(3), 963–967 (2015)CrossRefGoogle Scholar
  6. 6.
    K.R. Adhikari, S. Gurung, B.K. Bhattarai, B.M. Soucase, Comparative study on MAPbI3 based solar cells using different electron transporting materials. Phys. Status Solidi c 13(1), 13–17 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Moradi, R. Teimouri, M. Zahedifar, M. Saadat, Optimization of Cd1–yZnyS buffer layer in Cu (In, Ga) Se2 based thin film solar cells. Opt. Int. J. Light Electron Opt. 127(8), 4072–4075 (2016)CrossRefGoogle Scholar
  8. 8.
    G.E. Peron, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Func. Mater. 24(1), 151–157 (2014)CrossRefGoogle Scholar
  9. 9.
    J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013)CrossRefGoogle Scholar
  10. 10.
    J. You, J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, Y. Yang, ACS Nano 8, 1674–1680 (2014)CrossRefGoogle Scholar
  11. 11.
    D. Bi, S.J. Moon, L. Häggman, G. Boschloo, L. Yang, E.M. Johansson, M.K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Using a two-step deposition technique to prepare perovskite (CH 3 NH 3 PbI 3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. Rsc Advances 3(41), 18762–18766 (2013)CrossRefGoogle Scholar
  12. 12.
    J.W. Lee, H.S. Kim, N.G. Park, Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49(2), 311–319 (2016)CrossRefGoogle Scholar
  13. 13.
    M.M. Tavakoli, K.H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li, Z. Fan, Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano 9(10), 10287–10295 (2015)CrossRefGoogle Scholar
  14. 14.
    Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, J. You, Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29(46), 1703852 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)CrossRefGoogle Scholar
  16. 16.
    M.M. Tavakoli, Q. Lin, S.F. Leung, G.C. Lui, H. Lu, L. Li, B. Xiang, Z. Fan, Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates. Nanoscale 8(7), 4276–4283 (2016)CrossRefGoogle Scholar
  17. 17.
    S.F. Leung, Q. Zhang, M.M. Tavakoli, J. He, X. Mo, Z. Fan, Progress and design concerns of nanostructured solar energy harvesting devices. Small 12(19), 2536–2548 (2016)CrossRefGoogle Scholar
  18. 18.
    M.M. Tavakoli, M.H. Mirfasih, S. Hasanzadeh, H. Aashuri, A. Simchi, Surface passivation of lead sulfide nanocrystals with low electron affinity metals: photoluminescence and photovoltaic performance. Phys. Chem. Chem. Phys. 18(17), 12086–12092 (2016)CrossRefGoogle Scholar
  19. 19.
    R. Steim, S.A. Choulis, P. Schilinsky, C.J. Brabec, Interface modification for highly efficient organic photovoltaics. Appl. Phys. Lett. 92(9), 093303 (2008)CrossRefGoogle Scholar
  20. 20.
    H.P. Dong, Y. Li, S.F. Wang, W.Z. Li, N. Li, X.D. Guo, L.D. Wang, Interface engineering of perovskite solar cells with PEO for improved performance. J. Mater. Chem. A 3(18), 9999–10004 (2015)CrossRefGoogle Scholar
  21. 21.
    M.M. Tavakoli, A. Tayyebi, A. Simchi, H. Aashuri, M. Outokesh, Z. Fan, Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol. J. Nanopart. Res. 17(1), 1–13 (2015)CrossRefGoogle Scholar
  22. 22.
    M.M. Tavakoli, A. Simchi, H. Aashuri, Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells. Mater. Chem. Phys. 156, 163–169 (2015)CrossRefGoogle Scholar
  23. 23.
    M.M. Tavakoli, H. Aashuri, A. Simchi, S. Kalytchuk, Z. Fan, Quasi core/shell lead sulfide/graphene quantum dots for bulk heterojunction solar cells. J. Phys. Chem. C 119(33), 18886–18895 (2015)CrossRefGoogle Scholar
  24. 24.
    J.S. Yeo, R. Kang, S. Lee, Y.J. Jeon, N. Myoung, C.L. Lee, D.Y. Kim, J.M. Yun, Y.H. Seo, S.S. Kim, S.I. Na, Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12, 96–104 (2015)CrossRefGoogle Scholar
  25. 25.
    M.M. Tavakoli, R. Tavakoli, P. Davami, H. Aashuri, A quantitative approach to study solid state phase coarsening in solder alloys using combined phase-field modeling and experimental observation. J. Comput. Electron. 13(2), 425–431 (2014)CrossRefGoogle Scholar
  26. 26.
    D.I. Son, B.W. Kwon, J. Do Yang, D.H. Park, W.S. Seo, H. Lee, Y. Yi, C.L. Lee, W.K. Choi, Charge separation and ultraviolet photovoltaic conversion of ZnO quantum dots conjugated with graphene nanoshells. Nano Res. 5(11), 747–761 (2012)CrossRefGoogle Scholar
  27. 27.
    M.M. Tavakoli, A. Simchi, Z. Fan, H. Aashuri, Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells. Chem. Commun. 52(2), 323–326 (2016)CrossRefGoogle Scholar
  28. 28.
    P. You, Z. Liu, Q. Tai, S. Liu, F. Yan, Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 27(24), 3632–3638 (2015)CrossRefGoogle Scholar
  29. 29.
    M.M. Tavakoli, R. Tavakoli, Z. Nourbakhsh, A. Waleed, U.S. Virk, Z. Fan, High efficiency and stable perovskite solar cell using ZnO/rGO QDs as an electron transfer layer. Adv. Mater. Interfaces 3(11), 1500790 (2016)CrossRefGoogle Scholar
  30. 30.
    J.T.W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H.J. Snaith, R.J. Nicholas, Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14(2), 724–730 (2013)CrossRefGoogle Scholar
  31. 31.
    Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D.L. Phillips, S. Yang, Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc. 136(10), 3760–3763 (2014)CrossRefGoogle Scholar
  32. 32.
    M.M. Tavakoli, H. Aashuri, A. Simchi, Z. Fan, Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells. Phys. Chem. Chem. Phys. 17(37), 24412–24419 (2015)CrossRefGoogle Scholar
  33. 33.
    D.Y. Lee, S.I. Na, S.S. Kim, Graphene oxide/PEDOT: PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8(3), 1513–1522 (2016)CrossRefGoogle Scholar
  34. 34.
    Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang, W. Cui, X. Gao, Z. Liu, Y. Jin, B. Sun, Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6(18), 10505–10510 (2014)CrossRefGoogle Scholar
  35. 35.
    W. Li, H. Dong, X. Guo, N. Li, J. Li, G. Niu, L. Wang, Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. J. Mater. Chem. A 2(47), 20105–20111 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Agresti, S. Pescetelli, B. Taheri, A.E. Del Rio Castillo, L. Cinà, F. Bonaccorso, A. Di Carlo, Graphene–perovskite solar cells exceed 18% efficiency: a stability study. Chemsuschem 9(18), 2609–2619 (2016)CrossRefGoogle Scholar
  37. 37.
    A.L. Palma, L. Cinà, S. Pescetelli, A. Agresti, M. Raggio, R. Paolesse, F. Bonaccorso, A. Di Carlo, Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy 22, 349–360 (2016)CrossRefGoogle Scholar
  38. 38.
    T. Gatti, F. Lamberti, P. Topolovsek, M. Abdu-Aguye, R. Sorrentino, L. Perino, M. Salerno, L. Girardi, C. Marega, G.A. Rizzi, M.A. Loi, Interfacial morphology addresses performance of perovskite solar cells based on composite hole transporting materials of functionalized reduced graphene oxide and P3HT. Solar RRL 2(5), 1800013 (2018)CrossRefGoogle Scholar
  39. 39.
    T. Gatti, S. Casaluci, M. Prato, M. Salerno, F. Di Stasio, A. Ansaldo, E. Menna, A. Di Carlo, F. Bonaccorso, Boosting perovskite solar cells performance and stability through doping a poly-3 (hexylthiophene) hole transporting material with organic functionalized carbon nanostructures. Adv. Funct. Mater. 26(41), 7443–7453 (2016)CrossRefGoogle Scholar
  40. 40.
    E. Nouri, M.R. Mohammadi, Z.X. Xu, V. Dracopoulos, P. Lianos, Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter. Phys. Chem. Chem. Phys. 20(4), 2388–2395 (2018)CrossRefGoogle Scholar
  41. 41.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Grätzel, The light and shade of perovskite solar cells. Nat. Mater. 13(9), 838–842 (2014)CrossRefGoogle Scholar
  43. 43.
    Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014)CrossRefGoogle Scholar
  44. 44.
    M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013)CrossRefGoogle Scholar
  45. 45.
    V. D’Innocenzo, G. Grancini, M.J. Alcocer, A.R.S. Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H.J. Snaith, A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014)CrossRefGoogle Scholar
  46. 46.
    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013)CrossRefGoogle Scholar
  47. 47.
    C. Zuo, L. Ding, An 80.11% FF record achieved for perovskite solar cells by using the NH 4 Cl additive. Nanoscale 6(17), 9935–9938 (2014)CrossRefGoogle Scholar
  48. 48.
    P.W. Liang, C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X.K. Xin, J. Lin, A.K.Y. Jen, Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26(22), 3748–3754 (2014)CrossRefGoogle Scholar
  49. 49.
    H. Yu, F. Wang, F. Xie, W. Li, J. Chen, N. Zhao, The role of chlorine in the formation process of “CH3NH3PbI3-xClx” Perovskite. Adv. Funct. Mater. 24(45), 7102–7108 (2014)Google Scholar
  50. 50.
    N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014)CrossRefGoogle Scholar
  51. 51.
    P. Nagarjuna, P.N. Kumar, S.P. Singh, M. Deepa, M.A. Namboothiry, Efficient organic–inorganic hybrid perovskite solar cells processed in air. Phys. Chem. Chem. Phys. 16(45), 24691–24696 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor UniversityTehranIran
  2. 2.Chemical Engineering Department, Faculty of EngineeringAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations