Advertisement

Non-Ohmic behavior of copper-rich CCTO thin film prepared through magnetron sputtering method

  • Mi XiaoEmail author
  • Jiao Meng
  • Lei Li
Article
  • 17 Downloads

Abstract

CaCu3+xTi4O12+x (x = 0, 0.1, 0.2, 0.4, 0.8) thin films with obvious non-Ohmic behaviors were prepared through magnetron sputtering method. The second phase of CuO and TiO2 were detected in all Cu-rich ceramic targets, and CuO was detected in thin film sample when x = 0.8 which contributed to the increased grain size. The nonlinear I–V behaviors were explained by Schottky emission and Poole–Frenkel electrons transportation mechanism. The nonlinear coefficient increased with x, reached the maximum when x = 0.4 and then decreased, which is in accordance with the changing trend of trap barrier height, meaning that Poole–Frenkel model can describe the non-Ohmic behaviors of Cu non-stoichiometric samples better than Schottky emission model.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51877146).

References

  1. 1.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)CrossRefGoogle Scholar
  2. 2.
    J. Jumpatam, B. Putasaeng, N. Chanlek, P. Kidkhunthod, P. Thongbai, S. Maensiri, P. Chindaprasirt, RSC Adv. 7, 4092 (2017)CrossRefGoogle Scholar
  3. 3.
    X. Chen, D. Ma, F. He, G. Huang, H. Zhou, J. Eur. Ceram. Soc. 37, 1861 (2017)CrossRefGoogle Scholar
  4. 4.
    Z. Li, P. Zhao, Z. Wang, X. Xue, Z. Li, H. Fan, J. Mater. Sci. Mater. Electron. 27, 7327 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Nautiyal, C. Autret, C. Honstettre, S.D. Almeida-Didry, M.E. Amrani, S. Roger, B. Negulescu, A. Ruyter, J. Eur. Ceram. Soc. 36, 1391 (2016)CrossRefGoogle Scholar
  6. 6.
    P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 340 (2002)CrossRefGoogle Scholar
  7. 7.
    S.Y. Chung, I.D. Kim, S.J.L. Kang, Nat. Mater. 3, 774 (2004)CrossRefGoogle Scholar
  8. 8.
    M. Xiao, Q. Hu, J. Mater. Sci. Mater. Electron. 27, 10816 (2016)CrossRefGoogle Scholar
  9. 9.
    C. Cong, T. Ning, C. Wang, Y. Zhou, D. Zhang, P. Wang, H. Ming, G. Yang, Chin. Phys. Lett. 28, 87304 (2011)CrossRefGoogle Scholar
  10. 10.
    G. Zang, J. Zhang, P. Zheng, J. Wang, C. Wang, J. Phys. D Appl. Phys. 38, 1824 (2005)CrossRefGoogle Scholar
  11. 11.
    C. Chen, C. Wang, T. Ning, H. Lu, Y. Zhou, H. Ming, P. Wang, D. Zhang, G. Yang, Solid State Commun. 151, 1336 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, P. Thongbai, Ceram. Int. 43, 2705 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Huang, H. Zhang, M. Wei, Y. Lai, J. Li, J. Alloys Compd. 708, 1026 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Jumpatam, P. Putasaeng, J. Eur. Ceram. Soc. 34, 2941 (2014)CrossRefGoogle Scholar
  15. 15.
    L. Liu, D. Shi, S. Zheng, Y. Huang, S. Wu, Y. Li, L. Fang, C. Hu, Mater. Chem. Phys. 139, 844 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Huang, D. Shi, Y.H. Li, G. Li, Q. Wang, L. Liu, L. Fang, J. Mater. Sci. Mater. Electron. 24, 1994 (2013)CrossRefGoogle Scholar
  17. 17.
    Q. Zhang, T. Li, Z. Chen, R. Xue, Y. Wang, Mat. Sci. Eng. B 177, 168 (2012)CrossRefGoogle Scholar
  18. 18.
    B.S. Prakash, K.B.R. Varma, J. Mater. Sci. 42(17), 7467–7477 (2007)CrossRefGoogle Scholar
  19. 19.
    G.C. Deng, P. Muralt, MRS Proceed. 515, 526 (2010)Google Scholar
  20. 20.
    M. Xiao, H. Huang, Appl. Phys. A Mater. Sci. Process. 122, 924 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Xiao, L. Li, P. Zhang, J. Alloys Compd. 743, 570 (2018)CrossRefGoogle Scholar
  22. 22.
    M.J. Abu, J.J. Mohamed, M.F. Ain, Z.A. Ahmad, J. Alloys Compd. 683, 579 (2016)CrossRefGoogle Scholar
  23. 23.
    M.F.A. Rahman, S.D. Hutagalung, Z.A. Ahmad et al., J. Mater. Sci. Mater. Electron. 26(6), 3947–3956 (2015)CrossRefGoogle Scholar
  24. 24.
    X. Huang, H. Zhang, Y. Lai, J. Li, Appl. Phys. A Mater. Sci. Process. 123, 317 (2017)CrossRefGoogle Scholar
  25. 25.
    Jumpatam J, Thongbai P., Enhanced. J. Mater. Sci. Mater. Elecron. 1–6 (2016)Google Scholar
  26. 26.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  27. 27.
    K. Tsuji, W.T. Chen, H. Guo, W.H. Lee, S. Guillemet-Fritsch, C.A. Randall, J. Appl. Phys. 121, 064107 (2017)CrossRefGoogle Scholar
  28. 28.
    A.A. Felix, M.O. Orlandi, J.A. Varela, Solid State Commun. 151, 1377 (2011)CrossRefGoogle Scholar
  29. 29.
    G. Deng, P. Muralt, Phys. Rev. B 81, 224111 (2010)CrossRefGoogle Scholar
  30. 30.
    L.T. Mei, H.I. Hsiang, T.T. Fang, J. Am. Ceram. Soc. 91(11), 3735–3737 (2008)CrossRefGoogle Scholar
  31. 31.
    T.T. Fang, L.T. Mei, H.F. Ho, Acta Mater. 54(10), 2867–2875 (2006)CrossRefGoogle Scholar
  32. 32.
    A.A. Felix, V.D.N. Bezzon, M.O. Orlandi, D. Vengust, M. Spreitzer, E. Longo, D. Suvorov, J.A. Varela, J. Eur. Ceram. Soc. 37, 129 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Smart Grid of the Ministry of Education, School of Electrical and Information EngineeringTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations