Poly(vinylidene fluoride-co-chlorotrifluoroethylene) and polyurea composite with enhanced energy storage properties

  • Yujiu Zhou
  • Yuetao Zhao
  • Fujia Chen
  • Yan Chen
  • Qingxia Liu
  • Xin He
  • Xiling Mao
  • Yajie Yang
  • Jianhua XuEmail author


The improvement of energy density is desired for dielectric materials in capacitors according to the developing trend of electric devices. In this article, poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE)) and polyurea (PUA) are blended in different ratios to obtain high dielectric performance composite, and the dielectric polymer composite films are fabricated and investigated. The composite films combine the advantages of both contents, showing high dielectric constant of P(VDF-CTFE) and high energy storage efficiency of PUA. The results demonstrate that the composite film contains PUA with a volume fraction of 10% exhibits the best performance, achieving a breakdown strength as high as 5020 kV/cm, which is higher than that of P(VDF-CTFE)/polythiourea (PTU) composite ever reported. Moreover, the breakdown strength and energy storage efficiency are 1.35 times and 1.65 times higher than pure P(VDF-CTFE), respectively. The article provides a new high-performance dielectric material fabricated through a simple and effective blending method, and it has a great potential in electric energy storage capacitors.



The authors would like to thank Professor Jun Wang for his help with P–E loops measurement, Miss Xin Mao for her help with FTIR measurements, Miss Lingzhu Yu (National Engineering Research Center for Biomaterials, Sichuan University) for her help in SEM characterizing. This work was funded by the National Natural Science Foundation of China (Grant Nos. 51477026 and 61471085) and the National Science Funds for Creative Research Groups of China (Grant No. 61421002).


  1. 1.
    Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H. Li, Nature 523(7562), 576 (2015)CrossRefGoogle Scholar
  2. 2.
    M.S. Whittingham, MRS Bull. 33(4), 411–419 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Tasaka, S. Miyata, J. Appl. Phys. 57(3), 906–910 (1985)CrossRefGoogle Scholar
  4. 4.
    B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313(5785), 334–336 (2006)CrossRefGoogle Scholar
  5. 5.
    J. Claude, Y. Lu, Q. Wang, Appl. Phys. Lett. 91(21), 212904 (2007)CrossRefGoogle Scholar
  6. 6.
    F. Guan, Z. Yuan, E.W. Shu, L. Zhu, Appl. Phys. Lett. 94(5), 052907 (2009)CrossRefGoogle Scholar
  7. 7.
    F. Guan, L. Yang, J. Wang, B. Guan, K. Han, Q. Wang, L. Zhu, Adv. Funct. Mater. 21(16), 3176–3188 (2011)CrossRefGoogle Scholar
  8. 8.
    P. Khanchaitit, K. Han, M.R. Gadinski, Q. Li, Q. Wang, Nat. Commun. 4, 2845 (2013)CrossRefGoogle Scholar
  9. 9.
    X. Zhou, B. Chu, B. Neese, M. Lin, Q.M. Zhang, I.E.E.E. Trns, Dielectr. Electr. Insul. 14, 5 (2007)Google Scholar
  10. 10.
    W. Xia, Z. Xu, F. Wen, W.J. Li, Z.C. Zhang, Appl. Phys. Lett. 97(22), 222905 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Wang, X. Zhou, M. Lin, Appl. Phys. Lett. 94(20), 797 (2009)Google Scholar
  12. 12.
    S. Wu, Q. Burlingame, M. Lin, Q. M. Zhang, APS Meeting (2013)Google Scholar
  13. 13.
    Z. Cheng, Y. Thakur, Y. Zhou, D.M. Lin, S. Wu, Y. Jeong, Q.D. Shen, Q.M. Zhang, Appl. Phys. Lett. 106(20), 797 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Zhu, Z. Liu, F. Wang, J. Mater. Sci. 52(9), 5048–5059 (2017)CrossRefGoogle Scholar
  15. 15.
    T. Boccaccio, A. Bottino, G. Capannelli, P. Piaggio, J. Membr. Sci. 210(2), 315–329 (2002)CrossRefGoogle Scholar
  16. 16.
    R. Gregorio, Appl. Polym. Sci. 100(4), 3272–3279 (2010)CrossRefGoogle Scholar
  17. 17.
    C. Moazed, R. Amp, R.M. Spector, J. Polym. Sci. B 32(5), 859–870 (1994)Google Scholar
  18. 18.
    M.S. Zheng, J.W. Zha, Y. Yang, P. Han, C.H. Hu, Y.Q. Wen, Z.M. Dang, Appl. Phys. Lett. 110, 133902 (2017)CrossRefGoogle Scholar
  19. 19.
    Z. Cheng, W. Zhou, C. Zhang, Q. Li, R. Sha, X. Chen, B. Chu, Q.D. Shen, J. Polym. Sci. B 56, 97–104 (2018)CrossRefGoogle Scholar
  20. 20.
    H. Na, X. Liu, H. Sun, Y. Zhao, C. Zhao, X. Yuan, J. Polym. Sci. B 48(3), 372–380 (2010)CrossRefGoogle Scholar
  21. 21.
    R. Gregorio, D.S. Borges, Polymer 49(18), 4009–4016 (2008)CrossRefGoogle Scholar
  22. 22.
    J. Li, H. Gong, Q. Yang, Y. Xie, L. Yang, Z.C. Zhang, Appl. Phys. Lett. 104(26), 1368 (2014)Google Scholar
  23. 23.
    S. Wu, W. Li, M. Lin, Q. Burlingame, Q. Chen, A. Payzant, K. Xiao, Q.M. Zhang, Adv. Mater. 25(12), 1734–1738 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Sichuan Province Key Laboratory of Information Materials and Devices Application, College of Optoelectronic TechnologyChengdu University of Information TechnologyChengduChina

Personalised recommendations