Advertisement

Multiferroic and optical spectroscopic behavior of BST in BFO environment

  • Bhagyashree Mohanty
  • B. N. ParidaEmail author
  • R. K. Parida
Article
  • 5 Downloads

Abstract

The proposed multiferroic compound (BiBa0.5Sr0.5)0.5(Fe0.5Ti0.5)O3 (BFO–BST) is processed to investigate the effect of (Ba0.5Sr0.5)TiO3 on the structural and multiferroic behaviour of BFO. The sample was tailored by the conventional solid state route at a moderate temperature. SEM, XRD, RAMAN and FTIR characterization technique give the information about the single phase formation of the compound. The SEM image reveals the high density of the compound. The multiferroic behavior of the studied compound has been verified by studying its room temperature polarization as well as magnetization. The variation of dielectric constant and tangent loss with temperature and frequency gives the information about electric and dielectric behavior of the compound. Optical aspects of the ceramic are analyzed by using UV–Vis spectroscopy technique. Diffuse reflectance and absorbance data are used to measure the optical band gap of the compound and is estimated as 1.75 eV.

Notes

References

  1. 1.
    D. Varshney, A. Kumar, K. Verma, Effect of A site and B site doping on structural, thermal, and dielectric properties of BiFeO3 ceramics. J. Alloys Compd. 509, 8421–8426 (2011)CrossRefGoogle Scholar
  2. 2.
    D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature. J. Appl. Phys. Lett. 88, 1 (2006)Google Scholar
  3. 3.
    Z. Cheng, X. Wang, S. Dou, H. Kimura, K. Ozawa, Improved ferroelectric properties in multiferroic BiFeO3 thin films through La and Nb Co doping. Phys. Rev. B 77, 092101 (2008).  https://doi.org/10.1103/PhysRevB.77.092101 CrossRefGoogle Scholar
  4. 4.
    A.K. Ghosh, H. Kevin, B. Chatterjee, G.D. Dwivedi, A. Barman, H.D. Yang, S. Chatterjee, Effect of Sr-doping on multiferroic properties of Bi0.8La0.2Fe0.9Mn0.1O3. Solid State Commun. 152, 557–560 (2012).  https://doi.org/10.1016/j.ssc.2011.12.027 CrossRefGoogle Scholar
  5. 5.
    B. Yu, M. Li, J. Liu, D. Guo, L. Pei, X. Zhao, Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J. Phys. D 41, 065003 (2008)CrossRefGoogle Scholar
  6. 6.
    Z. Hu, M. Li, Y. Yu, J. Liu, L. Pei, J. Wang, X. Liu, B. Yu, X. Zhao, Effects of Nd and high-valence Mn co-doping on the electrical and magnetic properties of multiferroic BiFeO3 ceramics. Solid State Commun. 150, 1088 (2010)CrossRefGoogle Scholar
  7. 7.
    J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113 (2005)CrossRefGoogle Scholar
  8. 8.
    M.-L. Li, H. Liang, M.-X. Xu, Simple oxalate precursor route for the preparation of brain-like shaped barium– strontium titanate: Ba0.6Sr0.4TiO3. Mater. Chem. Phys. 112, 337–341 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Ezhilvalavan, T.-Y. Tseng, Progress in the developments of (Ba, Sr)TiO3 (BST) thin films for Gigabit era DRAMs. Mater. Chem. Phys. 65, 227–248 (2000)CrossRefGoogle Scholar
  10. 10.
    C.M. Carlson, T.V. Rivkin, P.A. Parilla, J.D. Perkins, D.S. Ginley, A.B. Kozyrev, V.N. Oshadchy, A.S. Pavlov, Large dielectric constant (∈/∈0 > 6000) Ba0.4Sr0.6TiO3 thin films for high-performance microwave phase shifters. Appl. Phys. Lett. 76, 1920–1922 (2000)CrossRefGoogle Scholar
  11. 11.
    F. Zimmermann, M. Voigts, C. Weil, R. Jakoby, P. Wang, W. Menesklou, E. IversTiffée, Investigation of barium strontium titanate thick films for tunable phase shifters. J. Eur. Ceram. Soc. 21, 2019–2023 (2001)CrossRefGoogle Scholar
  12. 12.
    R. Li, J. Cheng, Z. Meng, W. Wu, Low dielectric loss and enhanced tunable properties of Cr-doped barium strontium titanate solid solution. J. Mater. Sci.: Mater. Electron. 17, 587–591 (2006)Google Scholar
  13. 13.
    J. Li, D. Jin, L. Zhou, J. Cheng, Dielectric properties of barium strontium titanate (BST) ceramics synthesized by using mixed-phase powders calcined at varied temperatures. Mater. Lett. 76, 100–102 (2012)CrossRefGoogle Scholar
  14. 14.
    G. Brankovic, Z. Brankovic, M. Goes, C. Paiva-Santos, M. Cilense, J. Varela, E. Longo, Barium strontium titanate powders prepared by spray pyrolysis. Mater. Sci. Eng. B 122(2), 140–144 (2005)CrossRefGoogle Scholar
  15. 15.
    F.H. Wee, F. Malek, S. Sreekantan, A.U. Al-Amani, F. Ghani, K.Y. You, Investigation of the characteristics of barium strontium titanate (BST) dielectric resonator ceramic loaded on array antennas. Prog. Electromagn. Res. 121, 181–213 (2011)CrossRefGoogle Scholar
  16. 16.
    D.A. Tenne, A. Soukiassian, X.X. Xi, H. Choosuwan, R. Guo, A.S. Bhalla, Latttice dynamics in BaxSr1-xTiO3 single crystal: a Raman study. Phys. Rev. B 70, 174302 (2004)CrossRefGoogle Scholar
  17. 17.
    B.N. Parida, R.K. Parida, A. Panda, Multi-ferroic and optical spectroscopy properties of (Bi0.5Sr0.5)(Fe0.5Ti0.5)O3 solid solution. J. Alloys Compd. 696, 338–344 (2017)CrossRefGoogle Scholar
  18. 18.
    Q. Hang, Z. Xing, X. Zhu et al., Dielectric properties and related ferroelectric domain configurations in multiferroic BiFeO3–BaTiO3 solid solutions. Ceram. Int. 38, S411–S414 (2012)CrossRefGoogle Scholar
  19. 19.
    J.-R. Cheng, N. Li, L.E. Cross, Structural and dielectric properties of Ga-modified BiFeO3–PbTiO3 crystalline solutions. J. Appl. Phys. 94, 5153 (2003)CrossRefGoogle Scholar
  20. 20.
    N. Itoh, T. Shimura, W. Sakamoto et al., Fabrication and characterization of BiFeO3-BaTiO3 ceramics by solid state reaction. Ferroelectrics 356, 19–23 (2007)CrossRefGoogle Scholar
  21. 21.
    O.A. Bunina, I.N. Zakharchenko, Y.U.I. Golovko, V.M. Mukhortov, D.V. Stryukov, Y.U.I. Yuzyuk, Ferroelectrics 439, 67–73 (2017)CrossRefGoogle Scholar
  22. 22.
    B.N. Parida, P.R. Das, R. Padhee, D. Suara, A. Mishra, J. Rout, R.N.P. Choudhary, Synthesis and characterization of (Bi0.5Ba0.5)(Fe0.5Ti0.5)O3 ceramic. Mater. Res. Bull. 61, 544–550 (2015)CrossRefGoogle Scholar
  23. 23.
    K. Kumari, A. Prasad, K. Prasad, Dielectric, impedance/modulus and conductivity studies on [Bi0.5(Na1-XKX)0.5]0.94Ba0.06TiO3, (0.16 ≤ x ≤0.20) Lead-Free Ceramics. Am. J. Mater. Sci. 6(1), 1–18 (2016)Google Scholar
  24. 24.
    P.R. Das, B.N. Parida, R. Padhee, R.N.P. Choudhary, J. Adv. Ceram. 2013, 2112–2118 (2013)Google Scholar
  25. 25.
    C. Zhou, A. Feteira, X. Shan, H. Yang, Q. Zhou, J. Cheng, W. Li, H. Wang, Remarkably high-temperature stable piezoelectric properties of Bi (Mg0.5Ti0.5)O3 modified BiFeO3–BaTiO3 ceramics. Appl. Phys. Lett. 101, 032901 (2012)CrossRefGoogle Scholar
  26. 26.
    R.L. Frost, J. Yang, Z. Ding, Implications for the evidence of life on Mars. Chin. Sci. Bull. 48(17), 1844 (2003)CrossRefGoogle Scholar
  27. 27.
    P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V.M. Naik, M.B. Sahara, C. Sudakar, R. Naik, M.S.R. Rao, G. Lawes, Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO3 thin films. J. Phys.: Condens. Matter 21, 036001 (2009)Google Scholar
  28. 28.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627–637 (1966)CrossRefGoogle Scholar
  29. 29.
    T. Kawae, H. Tsuda, A. Morimoto, Reduced leakage current and ferroelectric properties in Nd and Mn codoped BiFeO3 thin films. Appl. Phys. Express 1, 051601 (2008)CrossRefGoogle Scholar
  30. 30.
    K. Takahashi, N. Kida, M. Tonouchi, Terahertz radiation by an ultrafast spontaneous polarization modulation of multiferroic BiFeO3 thin films. Phys. Rev. Lett. 96, 117402 (2006)CrossRefGoogle Scholar
  31. 31.
    V. Dorcet, P. Marchet, O. Pena, G. Trolliard, Properties of the solid solution (1− x) Na0.5Bi0. 5TiO3–(x) BiFeO3. J. Magn. Magn. Mater. 321, 1762–1766 (2009)CrossRefGoogle Scholar
  32. 32.
    G.L. Yuan, S.W. Or, Multiferroicity in polarized single-phase Bi0.875Sm0.125Fe O3 ceramics. J. Appl. Phys. 100, 024109 (2006)CrossRefGoogle Scholar
  33. 33.
    B. Pal, P.K. Giri, High temperature ferromagnetism and optical properties of Co doped ZnO nanoparticles. J. Appl. Phys. 108, 084322 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bhagyashree Mohanty
    • 1
  • B. N. Parida
    • 2
    Email author
  • R. K. Parida
    • 1
  1. 1.Department of Physics, Faculty of Engineering and Technology (ITER)Siksha ‘O’ Anusandhan Deemed to be UniversityBhubaneswarIndia
  2. 2.Department of PhysicsCentral Institute of TechnologyKokrajhar, BTADIndia

Personalised recommendations