Advertisement

Calcination effect on the magneto-optical properties of vanadium substituted NiFe2O4 nanoferrites

  • Y. SlimaniEmail author
  • M. A. Almessiere
  • S. Güner
  • N. A. Tashkandi
  • A. Baykal
  • M. F. Sarac
  • M. Nawaz
  • I. Ercan
Article
  • 49 Downloads

Abstract

Vanadium substituted nickel ferrite nanoparticles (NPs), NiFe2−xVxO4 (0.0 ≤ x ≤ 0.3) were prepared by sol–gel approach. The influence of calcination on the magnetic and optical properties of NiFe2−xVxO4 (0.0 ≤ x ≤ 0.3) NPs were investigated deeply. The lattice parameters ‘a’ are almost constant with V-substitution for as-prepared and calcined samples. It was found that the calcination process both increased the crystallites size and removed the impurity phases in all products. The values of optical energy band gap, Eg, are in range of 1.38–1.69 eV and 1.39–1.56 eV for as-prepared and calcined samples, respectively. The specific magnetic parameters such as saturation magnetization Ms, remanence Mr, coercivity Hc, squareness ratio (SQR) and magnetic moment \(n_{B}\) were determined from magnetization versus applied field measurements. The various M(H) curves exhibit ferromagnetic behavior at room temperature and 10 K. A decrease in Ms, Mr and \(n_{B}\) values was observed with Vanadium substitution. However, an increase in Hc value was observed. The obtained magnetic results are primarily resulted from the substitution of Fe ions with V ions that will weaken the A–B super-exchange interactions. Besides, the calcination step leads to an improvement in the various Ms, Mr and \(n_{B}\) parameters. This enhancement is due to the enlargement of crystallites size (or grains size) and the strengthening of the A–B exchange interactions caused by the calcination effect. Nevertheless, the enlargement in the crystallites size is followed by a reduction in Hc values.

Notes

Acknowledgements

The authors highly acknowledged the supports of the Institute for Research & Medical Consultations (Projects Application Nos. 2017-IRMC-S-3, 2017-576-IRMC, and 2018-IRMC-S-2) of Imam Abdulrahman Bin Faisal University (IAU – Saudi Arabia).

References

  1. 1.
    A. Baykal, N. Kasapoglu, Y. Koseoglu, M.S. Toprak, H. Bayrakdar, CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. J. Alloys Compd. 464, 514–518 (2008)CrossRefGoogle Scholar
  2. 2.
    H. Kavas, A. Baykal, M.S. Toprak, Y. Koseoglu, M. Sertkol, B. Aktas, Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. J. Alloys Compd. 479, 49–55 (2009)CrossRefGoogle Scholar
  3. 3.
    H. Kavas, N. Kasapoglu, A. Baykal, Y. Koseoglu, Characterization of NiFe2O4 nanoparticles synthesized by various methods. Chem. Pap. 63, 450–455 (2009)CrossRefGoogle Scholar
  4. 4.
    N. Kasapoglu, B. Birsoz, A. Baykal, Y. Koseoglu, M. Toprak, Synthesis and magnetic properties of octahedral ferrite NixCo1−x Fe2O4 nanocrystals. Open Chem. 5, 570–580 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Baykal, N. Kasapoglu, Y. Koseoglu, A. Basaran, H. Kavas, M. Toprak, Microwave-induced combustion synthesis and characterization of NixCo1−xFe2O4 nanocrystals (x = 0.0, 0.4, 0.6, 0.8, 1.0). Cent. Eur. J. Chem. 6, 125–130 (2008)Google Scholar
  6. 6.
    S.M. Patange, Sagar E. Shirsath, G.S. Jangam, K.S. Lohar, Santosh S. Jadhav et al., Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles. J. Appl. Phys. 109, 053909 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Mukherjee, S. Pradip, A.K. Mishra, D. Das, Zn substituted NiFe2O4 with very high saturation magnetization and negligible dielectric loss synthesized via a soft chemical route. Appl. Phys. A 116, 389–393 (2014)CrossRefGoogle Scholar
  8. 8.
    Hüseyin Kavas, Abdülhadi Baykal, Muhammet S. Toprak, Yüksel Köseoğlu, Murat Sertkol, Bekir Aktaş, Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. J. Alloy. Compd. 479, 49–55 (2009)CrossRefGoogle Scholar
  9. 9.
    D.R. Patil, B.K. Chougule, Effect of copper substitution on electrical and magnetic properties of NiFe2O4 ferrite. Mater. Chem. Phys. 117, 35–40 (2009)CrossRefGoogle Scholar
  10. 10.
    Sagar E. Shirsath, Santosh S. Jadhav, B.G. Toksha, S.M. Patange, K.M. Jadhav, Influence of Ce4+ ions on the structural and magnetic properties of NiFe2O4. J. Appl. Phys. 110, 013914 (2011)CrossRefGoogle Scholar
  11. 11.
    G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, Magnetic resonance study of Ce and Gd doped NiFe2O4 nanoparticles. J. Magn. Magn. Mater. 324, 479–483 (2012)CrossRefGoogle Scholar
  12. 12.
    E. Ranjith Kumar, R. Jayaprakash, S. Kumar, Effect of annealing temperature on structural and magnetic properties of manganese substituted NiFe2O4 nanoparticles. Mater. Sci. Semicond. Process. 17, 173–177 (2014)CrossRefGoogle Scholar
  13. 13.
    V. Manikandan, N. Priyadharsini, S. Kavita, J. Chandrasekaran, Sintering treatment effects on structural, dielectric and magnetic properties of Sn substituted NiFe2O4 nanoparticles. Superlattices Microstruct. 109, 648–654 (2017)CrossRefGoogle Scholar
  14. 14.
    M.I.M. Ismail, Role of calcination on structural, morphology and magnetic properties of zinc substituted Mn–Ni nanoferrites. Mater. Res. Exp. 5, 095004 (2018)CrossRefGoogle Scholar
  15. 15.
    R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, Effects of annealing temperature variation on the evolution of structural and magnetic properties of NiFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method. J. Magn. Magn. Mater. 394, 439–447 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Maisnam, S. Phanjoubam, H.N.K. Sarma, L.R. Devi, O.P. Thakur, C. Prakash, Hysteresis and initial permeability behavior of vanadium-substituted lithium–zinc–titanium ferrite. Physica B 352, 86–90 (2004)CrossRefGoogle Scholar
  17. 17.
    Z.K. Heiba, M.B. Mohamed, S.I. Ahmed, Cation distribution correlated with magnetic properties of cobalt ferrite nanoparticles defective by vanadium doping. J. Magn. Magn. Mater. 441, 409–416 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Kaiser, Magnetic and dielectric properties of low vanadium doped nickel–zinc–copper ferrites. J. Phys. Chem. Solids 71, 1451–1457 (2010)CrossRefGoogle Scholar
  19. 19.
    D. Jinjing, G. Yao, Y. Liu, J. Ma, Z. Guoyin, Influence of V2O5 as an effective dopant on the sintering behavior and magnetic properties of NiFe2O4 ferrite ceramics. Ceram. Int. 38, 1707–1711 (2012)CrossRefGoogle Scholar
  20. 20.
    M.A. Almessiere, Y. Slimani, S. Güner, A. Baykal, I. Ercan, Effect of dysprosium substitution on magnetic and structural properties of NiFe2O4 nanoparticles. J. Rare Earths (2019).  https://doi.org/10.1016/j.jre.2018.10.009 Google Scholar
  21. 21.
    M. Vadivel, R.R. Babu, K. Sethuraman, K. Ramamurthi, M. Arivanandhan, Synthesis, structural, dielectric, magnetic and optical properties of Cr substituted CoFe2O4 nanoparticles by co-precipitation method. J. Magn. Magn. Mater. 362, 122–129 (2014)CrossRefGoogle Scholar
  22. 22.
    U. Kurtan, H. Güngüneş, H. Sözeri, A. Baykal, Synthesis and characterization of monodisperse NiFe2O4 nanoparticles. Ceram. Int. 42, 7987–7992 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Jauhar, S. Singhal, Substituted cobalt nano-ferrites, CoMxFe2−xO4 (M = Cr3+, Ni2+, Cu2+, Zn2+; 0.2 ≤ x ≤ 1.0) as heterogeneous catalysts for modified Fenton׳s reaction. Ceram. Int. 40, 11845–11855 (2014)CrossRefGoogle Scholar
  24. 24.
    R.W. Frei, H. Zeitlin, Diffuse reflectance spectroscopy. CRC Crit. Rev. Anal. Chem. 2(2), 179–246 (1971)CrossRefGoogle Scholar
  25. 25.
    A. Baykal, S. Esir, A. Demir, S. Güner, Magnetic and optical properties of Cu1−xZnxFe2O4 nanoparticles dispersed in a silica matrix by a sol–gel auto-combustion method. Ceram. Int. 41, 231–239 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Baykal, S. Güner, A. Demir, S. Esir, F. Genç, Effects of Zinc substitution on magneto-optical properties of Mn1−xZnxFe2O4/SiO2 nanocomposites. Ceram. Int. 40, 13401–13408 (2014)CrossRefGoogle Scholar
  27. 27.
    J.L.O. Quinonez, U. Pal, M.S. Villanueva, Structural, magnetic, and catalytic evaluation of spinel Co, Ni, and Co–Ni ferrite nanoparticles fabricated by low-temperature solution combustion process. ACS Omega 3, 14986–15001 (2018)CrossRefGoogle Scholar
  28. 28.
    W.E. Potker, R. Ono, M.A. Cobos, A. Hernando, J.F.D.F. Araujo, A.C.O. Bruno, S.A. Lourenço, E. Lengo, F.A. La Pota, Influence of order-disorder effects on the magnetic and optical properties of NiFe2O4 nanoparticles. Ceram. Int. 44, 17290–17297 (2018)CrossRefGoogle Scholar
  29. 29.
    Y. Slimani, H. Güngüneş, M. Nawaz, A. Manikandan, H.S. El Sayed, M.A. Almessiere, H. Sözeri, S.E. Shirsath, I. Ercan, A. Baykal, Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li–Al co-substitution. Ceram. Int. 44, 14242 (2018)CrossRefGoogle Scholar
  30. 30.
    M.A. Almessiere, Y. Slimani, A. Baykal, Structural and magnetic properties of Ce doped strontium hexaferrite. Ceram. Int. 44, 9000 (2018)CrossRefGoogle Scholar
  31. 31.
    B.D. Cullity, C.D. Graham, Introduction to magnetic materials (Wiley, Hoboken, 2008)CrossRefGoogle Scholar
  32. 32.
    J.M.D. Coey, Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140–1142 (1971)CrossRefGoogle Scholar
  33. 33.
    H. Md Amir, Y. Gungunes, N. Slimani, H.S. Tashkandi, F. El Sayed, M. Aldakheel, H. Sertkol, A. Sozeri, I. Manikandan, A. Ercan, Baykal, mossbauer studies and magnetic properties of cubic CuFe2O4 nanoparticles. J. Supercond. Magn. (2018).  https://doi.org/10.1007/s10948-018-4733-5 Google Scholar
  34. 34.
    Y. Slimani, A. Baykal, Md Amir, H. Güngüneş, S. Guner, H.S. El Sayed, F. Aldakheel, T.A. Saleh, A. Manikandan, Substitution effect of Cr3+ on hyperfine interactions, magnetic and optical properties of Sr-hexaferrites. Ceram. Int. 44, 15995 (2018)CrossRefGoogle Scholar
  35. 35.
    L. Avazpour, H. Shokrollahi, M.R. Toroghinejad, M.A. Zandi Khajeh, Effect of rare earth substitution on magnetic and structural properties of Co1−xRExFe2O4 (RE: Nd, Eu) nanoparticles prepared via EDTA/EG assisted sol–gel synthesis. J. Alloys Compd. 662, 441–447 (2016)CrossRefGoogle Scholar
  36. 36.
    M.A. Almessiere, Y. Slimani, H. Güngüneş, H.S. El Sayed, A. Baykal, AC susceptibility and hyperfine interactions of vanadium substituted barium nanohexaferrites. Ceram. Int. 44, 17749–17758 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biophysics, Institute for Research and Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  2. 2.Department of Nano-Medicine, Institute for Research and Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  3. 3.Department of Physics, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  4. 4.Institute of Inorganic ChemistryRWTH Aachen UniversityAachenGermany
  5. 5.Department of Mechanical Engineering, Faculty of EngineeringSuleyman Demirel UniversityIspartaTurkey

Personalised recommendations