Advertisement

Broadband and tunable high-performance microwave absorption composites reduced graphene oxide-Ni

  • Kai Xu
  • Weihai Ma
  • Yanan Liu
  • Yongfei Bai
  • Jiewen Xue
  • Yi Liu
  • Guizhe ZhaoEmail author
  • Yaqing LiuEmail author
Article
  • 9 Downloads

Abstract

Reduced graphene oxide (RGO)/Ni composites with high-performance microwave absorption were successfully synthesized through the electroless plating. The structures and morphologies of the materials were characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy as well as scanning electron microscope. Results show that spherical pure nickel particles are uniformly distributed on the surface of RGO. The complex permittivity and permeability of the composite were measured by mixing RGO/Ni with paraffin, the minimum reflection loss could reach − 51.1 dB, and from 7.28 to 11.28 GHz, the reflection loss is less than − 10 dB. Through the analysis of the absorbing mechanisms, it is found that the quarter wavelength theory contributes more to the absorbing performance than the impedance matching. In addition, changing the electroless plating time is a feasible method to adjust the absorbing properties of the materials. RGO/Ni is an excellent microwave absorption material with a strong tunable absorbing property at its own low content.

Notes

Acknowledgements

The authors acknowledge the financial support from the Shanxi Province 1331 Project Key Innovation Team of Polymeric Functional New Materials and the Shanxi Province Innovative Disciplinary Group of New Materials Industry.

References

  1. 1.
    A. Abouimrane, O.C. Compton, K. Amine, J. Phys. Chem. C 114, 12800–12804 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Chen, K. Fu, S. Zhu, Nano Lett. 16, 3616–3623 (2016)CrossRefGoogle Scholar
  3. 3.
    J. Shen, Y. Zhu, X. Yang, Chem. Commun. 43, 3686–3699 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Liu, R. Che, H. Chen, Small 8, 1214–1221 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Guo, H. Wu, X. Liao, J. Phys. Chem. C 115, 23688–23694 (2011)CrossRefGoogle Scholar
  6. 6.
    L. Kong, X. Yin, Y. Zhang, J. Phys. Chem. C 117, 19701–19711 (2013)CrossRefGoogle Scholar
  7. 7.
    L. Wang, Y. Huang, X. Sun, Nanoscale 6, 3157 (2014)CrossRefGoogle Scholar
  8. 8.
    N. Yousefi, X. Sun, X. Lin, Adv. Mater. 26, 5480–5487 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Zhang, J. Zhang, H. Zhang, Smart Mater. Struct. 15, 759–766 (2006)CrossRefGoogle Scholar
  10. 10.
    D. Sun, Q. Zou, Y. Wang, Nanoscale 6, 6557–6562 (2014)CrossRefGoogle Scholar
  11. 11.
    C. Qiang, J. Xu, Z. Zhang, J. Alloy. Compd. 506, 93–97 (2010)CrossRefGoogle Scholar
  12. 12.
    V. Sunny, P. Kurian, P. Mohanan, J. Alloy. Compd. 489, 297–303 (2010)CrossRefGoogle Scholar
  13. 13.
    C. Gong, J. Zhang, C. Yan, J. Mater. Chem. 22, 3370–3376 (2012)CrossRefGoogle Scholar
  14. 14.
    Z. Wang, L. Wu, J. Zhou, J. Phys. Chem. C 117, 5446–5452 (2013)CrossRefGoogle Scholar
  15. 15.
    J. Yang, Y. Yang, H. Duan, J. Mater. Sci.: Mater. Electron. 28, 5925–5930 (2017)Google Scholar
  16. 16.
    F. Ren, G. Zhu, J. Polym. Res. 22, 1–7 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Sun, B. Dong, M. Cao, Chem. Mater. 23, 1587–1593 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Li, B. Wang, J. Liu, Acta Phys. Chim. Sin. 28, 2754–2760 (2012)Google Scholar
  19. 19.
    X. Wang, M. Yu, W. Zhang, Appl. Phys. A 118, 1053–1058 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Zhou, H. Chen, C. Xu, J. Mater. Sci.: Mater. Electron. 26, 3530–3537 (2015)Google Scholar
  21. 21.
    C. Xu, G. Liu, H. Chen, J. Mater. Sci.: Mater. Electron. 25, 2611–2617 (2014)Google Scholar
  22. 22.
    F. Ren, G. Zhu, P. Ren, Appl. Surf. Sci. 351, 40–47 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Fu, Q. Jiao, Y. Zhao, J. Mater. Chem. A 1, 5577–5586 (2013)CrossRefGoogle Scholar
  24. 24.
    N.J. Bell, H.N. Yun, A. Du, J. Phys. Chem. C 115, 6004–6009 (2011)CrossRefGoogle Scholar
  25. 25.
    W. Zhou, X. Hu, X. Bai, ACS Appl. Mater. Interfaces. 3, 3839 (2011)CrossRefGoogle Scholar
  26. 26.
    Y. Qing, D. Min, Y. Zhou, Carbon 86, 98–107 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, Y. Huang, H. Chen, Carbon 105, 438–447 (2016)CrossRefGoogle Scholar
  28. 28.
    G.S. Wang, L.Z. Nie, S.H. Yu, RSC Adv. 2, 6216–6221 (2012)CrossRefGoogle Scholar
  29. 29.
    M.S. Cao, X.L. Shi, X.Y. Fang, Appl. Phys. Lett. 91, 203110–2031103 (2007)CrossRefGoogle Scholar
  30. 30.
    S. Jasbir, S. Charanjeet, K. Dalveer, Mater. Des. 110, 749–761 (2016)CrossRefGoogle Scholar
  31. 31.
    X. Li, J. Feng, Y. Du, J. Mater. Chem. A 3, 5535–5546 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Fang, T. Liu, Z. Chen, Nanoscale 8, 8899 (2016)CrossRefGoogle Scholar
  33. 33.
    T. Bao, Z. Yan, X. Su, Mater. Sci. Eng., B 176, 906–912 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanxi Province Key Laboratory of Functional Nanocomposites, College of Materials Science and EngineeringNorth University of ChinaTaiyuanPeople’s Republic of China

Personalised recommendations