Advertisement

Strong interface effect induced high-k property in polymer based ternary composites filled with 2D layered Ti3C2 MXene nanosheets

  • Qihuang Deng
  • Yefeng FengEmail author
  • Wei Li
  • Xiaoqing Xu
  • Cheng PengEmail author
  • Qin Wu
Article
  • 21 Downloads

Abstract

High permittivity property is hard to achieve in the binary polymer based nanocomposites filled with wide-band-gap semiconductors unless substantial semiconductor fillers are introduced into polymer matrices. The overload of those semiconducting nanofillers usually results in the severe reduction of the mechanical and electric breakdown properties of the composite materials. In this work, the novel ternary polymer based nanocomposites were designed and further fabricated through adding a low concentration of 2D Ti3C2 MXene nanosheets into the binary polymer based nanocomposites containing alpha-SiC nanoparticles. In comparison with the binary composites, these ternary composites could exhibit the notably improved high permittivity properties due to significantly enhanced interface interaction from the introduction of MXene nanosheets. The desirable highly maintained comprehensive electrical properties and mechanical performances have been achieved in those ternary composites. This work might open the door to the large-scale preparation of promising high-permittivity nanocomposite dielectric materials based on building the ternary composite systems.

Notes

Acknowledgements

This work was supported by the [National Natural Science Foundation of China] under Grant [Number 51502309] and [Talent Introduction Scientific Research Initiation Projects of Yangtze Normal University] under Grant [Number 2017KYQD33].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    N. Pramanik, S. Seok, Jpn. J. Appl. Phys. 47, 531–537 (2016)CrossRefGoogle Scholar
  2. 2.
    X. Zhang, S. Zhao, F. Wang, Y. Ma, L. Wang, D. Chen, C. Zhao, W. Yang, Appl. Surf. Sci. 403, 71–79 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Kim, H. Kim, T. Kim, S. Yu, J. Suk, T. Jeong, S. Song, M. Bae, I. Han, D. Jung, J. Mater. Chem. C 1, 5078–5083 (2013)CrossRefGoogle Scholar
  4. 4.
    Z. Dang, D. Xie, C. Shi, Appl. Phys. Lett. 91, 222902 (2007)CrossRefGoogle Scholar
  5. 5.
    J. Kim, W. Lee, J. Suk, J. Potts, H. Chou, I. Kholmanov, R. Piner, J. Lee, D. Akinwande, R. Ruoff, Adv. Mater. 25, 2308–2313 (2013)CrossRefGoogle Scholar
  6. 6.
    B. Krause, P. Pötschke, E. Ilin, M. Predtechenskiy, Polymer 98, 45–50 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Pastorczak, L. Okrasa, J. Yoon, T. Kowalewski, K. Matyjaszewski, Polymer 110, 25–35 (2017)CrossRefGoogle Scholar
  8. 8.
    H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Nano Lett. 17, 384–391 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Feng, B. Miao, H. Gong, Y. Xie, X. Wei, Z. Zhang, ACS Appl. Mater. Interfaces 8, 19054–19065 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Feng, J. Zhang, J. Hu, S. Li, C. Peng, Electron. Mater. Lett. 14, 187–197 (2018)CrossRefGoogle Scholar
  11. 11.
    T. Dawin, Z. Ahmadi, F. Taromi, Prog. Org. Coat. 119, 23–30 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Feng, C. Peng, Y. Li, J. Hu, Materials 11, 1111 (2018)CrossRefGoogle Scholar
  13. 13.
    Y. Feng, Z. Xu, J. Hu, H. Huang, C. Peng, Mater. Res. Express 4, 095001 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang, L. Zhang, Y. Gan, C. Liang, W. Zhang, ACS Nano 10, 2491–2499 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Feng, H. Gong, Y. Xie, X. Wei, L. Yang, Z. Zhang, J. Appl. Phys. 117, 094104 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Moharana, S. Joshi, R. Mahaling, J. Appl. Polym. Sci. 134, 45583 (2017)CrossRefGoogle Scholar
  17. 17.
    W. Zhang, Q. Yang, Y. Zhou, J. Cao, Comput. Mater. Sci. 115, 120–124 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Feng, Y. Wu, Y. Xie, X. Wei, Z. Zhang, Mater. Sci. Semicond. Proc. 61, 63–70 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Guo, H. Wu, G. Chen, X. Chen, Polym. Compos. 24, 456–463 (2010)CrossRefGoogle Scholar
  20. 20.
    D. Banerjee, T. Nguyen, T. Chuang, Comput. Mater. Sci. 114, 209–218 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Jan, A. Zeb, S. Milne, J. Eur. Ceram. Soc. 36, 2713–2718 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Boersma, J. And, M. Wübbenhorst, Macromolecules 31, 7453–7460 (2014)CrossRefGoogle Scholar
  23. 23.
    O. Bulashenko, J. Rubı, V. Kochelap, Appl. Phys. Lett. 75, 2614 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringYangtze Normal UniversityChongqingPeople’s Republic of China
  2. 2.Department of Fashion Communication and MediaJiangxi Institute of Fashion TechnologyNanchangPeople’s Republic of China

Personalised recommendations