Advertisement

High-performance low voltage operation of indium zinc tin oxide thin film transistors using chemically derived sodium β-alumina dielectric

  • Pavan Pujar
  • Dipti Gupta
  • Saumen MandalEmail author
Article
  • 39 Downloads

Abstract

We present high performance, low voltage (≤ 3 V) operation of thin film transistors (TFTs) with indium zinc tin oxide (IZTO: In4Sn4ZnO15)-semiconductor. The film of IZTO was fabricated via low-temperature (200 °C) solution combustion processing without incorporating an external fuel. As 2-methoxyethanol is a widely used organic solvent due to its high dissolution capability, serve the purpose of both the solvent and the fuel. On quantification from the balanced redox reaction, 0.3% of 2-methoxyethanol assisted for the action of fuel and helped in the formation of metal oxide, and the rest (99.7%) served the purpose of being dissolution medium. The balanced redox chemistry yielded a significant fraction of (56.5%) metal oxide at 200 °C confirmed via high-resolution oxygen 1s spectrum. Further, the chemically derived thin film of sodium β-alumina with a dielectric constant of ~ 21, while annealing at 350 °C incorporated in the TFT for the realization of low voltage operation. The performance assessment is systematically carried out both silicon dioxide (SiO2) and sodium β-alumina and found that the TFTs with SiO2 and IZTO exhibited a saturation mobility (µsat), Ion/Ioff ratio and the threshold voltage (Vth) of 0.50 ± 0.02 cm2 V−1 s−1, 1.25 × 104 and 6.6 ± 0.79 V respectively. While changing the dielectric to sodium β-alumina presented a µsat, Ion/Ioff ratio and Vth of 4.21 ± 0.18 cm2 V−1 s−1, 1.4 × 102 and 0.47 ± 0.08 V respectively.

Notes

Acknowledgements

This work is supported by Science and Engineering Research Board (SERB), Department of Science and Technology (DST) (ECR/2015/000339), Govt. of India and Industrial Research and Consultancy Center (IRCC) IIT Bombay for providing various characterization facilities.

Supplementary material

10854_2019_1238_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1242 kb)

References

  1. 1.
    K. Nomura, O. Hiromichi, T. Akihiro, K. Toshio, H. Masahiro, H. Hideo, Nature 432, 488 (2004)CrossRefGoogle Scholar
  2. 2.
    Y.H. Kang, J. Sunho, M.K. Jung, Y.L. Ji, C. Youngmin, L. Changjin, Y.C. Song, J. Mater. Chem. 2, 4247 (2014)Google Scholar
  3. 3.
    Y.H. Kim, S.H. Jae, H.K. Tae, P. Sungjun, H.Y. Myung, K.M. Jiwan, S.O. Min, R.Y. Gi, Y.N. Yong, K.P. Sung, Nature 489, 128 (2012)CrossRefGoogle Scholar
  4. 4.
    K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Nat. Mater. 10, 45 (2011)CrossRefGoogle Scholar
  5. 5.
    D.A. Byung, J.J. Hye, S. Jiazhen, P. Jozeph, S.P. Jin, Semicond. Sci. Technol. 30, 064001 (2015)CrossRefGoogle Scholar
  6. 6.
    G.K. Myung, G.K. Mercouri, F. Antonio, J.M. Tobin, Nat. Mater. 10, 382 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Daniela, K. Asal, B. Rita, S. Lidia, B. Pedro, M. Rodrigo, F. Elvira, J. Phys. D 50, 065106 (2017)CrossRefGoogle Scholar
  8. 8.
    A.H. Cathleen, O.M. Thomas, F.G. Jean, R.P. Kenneth, Chem. Mater. 22, 3569 (2010)CrossRefGoogle Scholar
  9. 9.
    P.H. Steven, R.P. Kenneth, O.M. Thomas, J. Am. Ceram. Soc. 91, 3683 (2008)CrossRefGoogle Scholar
  10. 10.
    P. Pujar, G. Srinivas, S. Mukesh, G. Bikesh, T. Kartick, G. Dipti, Y.N. Yong, M. Saumen, RSC Adv. 7, 48253 (2017)CrossRefGoogle Scholar
  11. 11.
    G.K. Myung, S.K. Hyun, G.H. Young, H. Jiaqing, G.K. Mercouri, F. Antonio, J.M. Tobin, J. Am. Chem. Soc. 132, 10352 (2010)CrossRefGoogle Scholar
  12. 12.
    L. Ao, Z. Huihui, S. Huabin, X. Yong, Y.N. Yong, Adv. Mater. 30, 1706364 (2018)CrossRefGoogle Scholar
  13. 13.
    N.P. Bhola, M.D. Bal, C.S. Kevin, E.K. Howard, Nat. Mater. 8, 898 (2009)CrossRefGoogle Scholar
  14. 14.
    L. Yu, G. Pengfei, Z. Bo, L.F. Michael, E.K. Howard, Chem. Mater. 25, 3788 (2013)CrossRefGoogle Scholar
  15. 15.
    C.C. Addison, W.B. Simpson, J. Chem. Soc. (1965).  https://doi.org/10.1039/JR9650000598 Google Scholar
  16. 16.
    S. Muranaka, Y. Bando, T. Takada, Thin Solid Films 151, 355 (1987)CrossRefGoogle Scholar
  17. 17.
    A.C. Elizabeth, H.P. Deok, G.K. Matthew, J.E. Lisa, K.P. Cory, H.M. Ryan, A.K. Douglas, W.J. Darren, W.B. Shannon, Chem. Mater. 29, 9480 (2017)CrossRefGoogle Scholar
  18. 18.
    D.T. Clark, T. Fok, G.G. Roberts, R.W. Sykes, Thin Solid Films 70, 261 (1980)CrossRefGoogle Scholar
  19. 19.
    C. Battistoni, J.L. Dormann, D. Fiorani, E. Paparazzo, S. Viticoli, Solid State Commun. 39, 581 (1981)CrossRefGoogle Scholar
  20. 20.
    T.B. Graciela, R.M. Sergio, A.S. Osvaldo, A.C. Alberto, Appl. Catal. 24, 109 (1986)CrossRefGoogle Scholar
  21. 21.
    B. Rita, S. Daniela, S. Lídia, B. Pedro, P. Luís, M. Rodrigo, F. Elvira, ACS Appl. Mater. Interfaces 6, 19592 (2014)CrossRefGoogle Scholar
  22. 22.
    W.H. Jonathan, G.K. Myung, G.K. Mercouri, F. Antonio, J.M. Tobin, J. Am. Chem. Soc. 134, 9593 (2012)CrossRefGoogle Scholar
  23. 23.
    G. Bikesh, P. Pujar, S.M. Sib, G. Dipti, M. Saumen, Ceram. Int. 44, 1500 (2018)CrossRefGoogle Scholar
  24. 24.
    C. Yao, W. Binghao, H. Wei, Z. Xinan, W. Gang, J.L. Matthew, H. Yan, L. Zhiyun, J.M. Tobin, F. Antonio, Chem. Mater. 30, 3233 (2018)CrossRefGoogle Scholar
  25. 25.
    A.J. Rohit, C.N. Anh, C. Yuxin, S. Sudhanshu, C. Shi, M. Nripan, ACS Appl. Mater. Interfaces 8, 1139 (2016)CrossRefGoogle Scholar
  26. 26.
    R.N. Bukke, A. Christophe, H.C. Md Delwar, K. Taehun, L. Tengda, J. Jin, Jpn. J. Appl. Phys. 55, 03CC02 (2016)CrossRefGoogle Scholar
  27. 27.
    N.B. Ravindra, A. Christophe, N.M. Mude, J. Jin, IEEE Electron Device Lett. 39, 371 (2018)CrossRefGoogle Scholar
  28. 28.
    N.B. Ravindra, A. Christophe, J. Jin, IEEE Electron Device Lett. 37, 433 (2016)CrossRefGoogle Scholar
  29. 29.
    H.L. Doo, Y.H. Seung, S.H. Gregory, C. Chih-hung, J. Mater. Chem. 19, 3135 (2009)CrossRefGoogle Scholar
  30. 30.
    J.K. Bong, J.K. Hyung, S.Y. Tae, S.K. Yong, H.L. Hyun, Electrochem. Solid State Lett. 13, H419 (2010)CrossRefGoogle Scholar
  31. 31.
    S.F. Chur, T.L. Po, H.H. Wei, M.S. Simon, IEEE Electron Device Lett. 35, 1103 (2014)CrossRefGoogle Scholar
  32. 32.
    J.K. Bong, J.K. Hung, S.Y. Tae, S.K. Yong, H.L. Doo, C. Youngmin, H.R. Byung, H.L. Hyun, J. Ind. Eng. Chem. 17, 96 (2011)CrossRefGoogle Scholar
  33. 33.
    T.L. Po, H.C. Chih, S.F. Chur, RSC Adv. 6, 106374 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology Karnataka (NITK)SurathkalIndia
  2. 2.Plastic Electronics and Energy Laboratory, Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayPowaiIndia

Personalised recommendations