Advertisement

Performance enhancement of perovskite solar cells via Nb/Ta-doped TiO2 mesoporous layers

  • Meng Li
  • Yulong ZhaoEmail author
  • Lei Zhu
  • Jian SongEmail author
  • Yinghuai Qiang
Article
  • 34 Downloads

Abstract

The power conversion efficiency of mesoporous perovskite solar cells (PSCs) is closely related with TiO2 mesoporous layer. As the most universal mesoporous layer material, however, TiO2 does weakly in electrical properties. As a result, structure modifications of TiO2 mesoporous layer are required. In this work, niobium/tantalum doped TiO2 mesoporous layer were prepared via a facile one-pot solution process, and applied successfully as high quality mesoporous layer for mesoporous PSCs. Performance of perovskite solar cells prepared with Nb/Ta-doped TiO2 mesoporous layer enhanced apparently compared with the control device, especially in the short circuit current density (Jsc) which was improved from 18.4 to 21.3 mA cm−2.

Notes

Acknowledgements

We appreciate the financial supports from Natural Science Foundation of Jiangsu Province (BK20160262), the Fundamental Research Funds for the Central Universities (2018QNA06), and Promoting Scientific and Technological Innovation Foundation of Xuzhou (KC18067).

References

  1. 1.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)CrossRefGoogle Scholar
  2. 2.
    H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, Sci. Rep. 2, 591 (2012)CrossRefGoogle Scholar
  3. 3.
    J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)CrossRefGoogle Scholar
  5. 5.
    N.G. Park, J. Phys. Chem. Lett. 4, 2423 (2013)CrossRefGoogle Scholar
  6. 6.
    H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T.L. Ma, S. Hayase, J. Phys. Chem. Lett. 5, 1004 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Kazim, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, Angew. Chem. Int. Ed. 53, 2812 (2014)CrossRefGoogle Scholar
  9. 9.
    Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347, 967 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  11. 11.
    W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Science 356, 1376 (2017)CrossRefGoogle Scholar
  12. 12.
    N.G. Park, Mater. Today 18, 65 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Song, S.P. Li, Y.L. Zhao, J. Yuan, Y. Zhu, Y. Fang, L. Zhu, X.Q. Gu, Y.H. Qiang, J. Alloys Compd. 694, 1232 (2017)CrossRefGoogle Scholar
  14. 14.
    D.-Y. Son, J.-H. Im, H.-S. Kim, N.-G. Park, J. Phys. Chem. C 118, 16567 (2014)CrossRefGoogle Scholar
  15. 15.
    J.P. Correa-Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T.J. Jacobsson, A.R. Srimath Kandada, S.M. Zakeeruddin, Energy Environ. Sci. 8, 2928 (2015)CrossRefGoogle Scholar
  16. 16.
    S.S. Shin, W.S. Yang, J.H. Noh, J.H. Suk, N.J. Jeon, J.H. Park, J.S. Kim, W.M. Seong, S.I. Seok, Nat. Commun. 6, 7410 (2015)CrossRefGoogle Scholar
  17. 17.
    S.S. Shin, W.S. Yang, E.J. Yeom, S.J. Lee, N.J. Jeon, Y.-C. Joo, I.J. Park, J.H. Noh, S.I. Seok, J. Phys. Chem. Lett. 2016, 7 (1845)Google Scholar
  18. 18.
    A.Y. Zhang, W.K. Wang, D.N. Pei, J. Water Res. 92, 78 (2016)CrossRefGoogle Scholar
  19. 19.
    H.P. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z.R. Hong, J.B. You, Y.S. Liu, Y. Yang, Science 345, 542 (2014)CrossRefGoogle Scholar
  20. 20.
    X.D. Liu, E.Y. Jiang, Z.Q. Li, Q.G. Song, Appl. Phys. Lett. 92, 252104 (2008)CrossRefGoogle Scholar
  21. 21.
    D.S. Bhachu, S. Sathasivam, G. Sankar, D.O. Scanlon, G. Cibin, C.J. Carmalt, I.P. Parkin, G.W. Watson, S.M. Bawaked, A.Y. Obaid, S. Al Thabaiti, S.N. Basahel, Adv. Funct. Mater. 24, 5075 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Lee, J.H. Noh, H.S. Han, D.K. Yim, D.H. Kim, J.K. Lee, J.Y. Kim, H.S. Jung, K.S. Hong, J. Phys. Chem. C 113, 6878 (2009)CrossRefGoogle Scholar
  23. 23.
    X. Lü, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, S. Huang, Adv. Funct. Mater. 20, 509 (2010)CrossRefGoogle Scholar
  24. 24.
    W. Chen, Y.Z. Wu, Y.F. Yue, J.L.W.J. Zhang, X.D. Yang, H. Chen, E.B. Bi, I. Ashraful, M. Grätzel, L.Y. Han, Science 350, 944 (2015)CrossRefGoogle Scholar
  25. 25.
    D.H. Kim, G.S. Han, W.M. Seong, J.W. Lee, B.J. Kim, N.G. Park, K.S. Hong, S. Lee, H.S. Jung, Chemsuschem 8, 2392 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Yang, R. Guo, K. Kadel, Y. Liu, K. O’Shea, R. Bone, X. Wang, J. He, W. Li, J. Mater. Chem. A 2, 19616 (2014)CrossRefGoogle Scholar
  27. 27.
    X. Yin, Y.J. Guo, Z.S. Xue, P. Xu, M. He, B. Liu, Nano Res. 2015, 8 (1997)Google Scholar
  28. 28.
    B.-X. Chen, H.-S. Rao, W.-G. Li, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, J. Mater. Chem. A 4, 5647 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Liu, H.T. Yang, W.W. Tan, X.W. Zhou, Y. Lin, Electrochim. Acta 56, 396 (2010)CrossRefGoogle Scholar
  30. 30.
    J. Liu, Y.D. Duan, X.W. Zhou, Y. Lin, Appl. Surf. Sci. 277, 231 (2013)CrossRefGoogle Scholar
  31. 31.
    Y. Xie, F. Shao, Y.M. Wang, T. Xu, D.L. Wang, F.Q. Huang, ACS Appl. Mater. Interface 7, 12937 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Che, L. Zhu, Y.L. Zhao, D.S. Yao, X.Q. Gu, J. Song, Y.H. Qiang, Mater. Sci. Semicond. Process. 56, 29 (2016)CrossRefGoogle Scholar
  33. 33.
    V. Gonzalez-Pedro, E. Juarez-Perez, W. Arsyad, E. Barea, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, Nano Lett. 14, 888 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Yang, J. Song, Y.L. Zhao, L. Zhu, X.Q. Gu, Y.Q. Gu, M. Che, Y.H. Qiang, J. Alloys Compd. 684, 84 (2016)CrossRefGoogle Scholar
  35. 35.
    J. Song, Y. Yang, Y.L. Zhao, M. Che, L. Zhu, X.Q. Gu, Y.H. Qiang, Mat. Sci. Eng. B 217, 18 (2017)CrossRefGoogle Scholar
  36. 36.
    E. Juarez-Perez, M. Wubler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, J. Phys. Chem. Lett. 5, 680 (2014)CrossRefGoogle Scholar
  37. 37.
    K. Wang, Y.T. Shi, Q.S. Dong, Y. Li, S.F. Wang, X.F. Yu, M.Y. Wu, T.L. Ma, J. Phys. Chem. Lett. 6, 755 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouChina
  2. 2.The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and EquipmentsChina University of Mining and TechnologyXuzhouChina
  3. 3.The Xuzhou City Key Laboratory of High Efficient Energy Storage Technology and EquipmentsChina University of Mining and TechnologyXuzhouChina

Personalised recommendations