Advertisement

Kinetics of electrophoretic deposition of nano-Co3O4 coating

  • Daixiong ZhangEmail author
  • Xia Wang
  • Xiaofei Peng
  • Qinying WangEmail author
  • Qing XiangEmail author
Article
  • 10 Downloads

Abstract

Co3O4 with a coating architecture is one of the most promising transition metal oxides because of its wide application in electrochromic device, sensors, heterogeneous catalysts, electrocatalyst, supercapacitors and photocatalyst. In this study, an environment-friendly and cost-effective route for fabricating Co3O4 coating was successfully realized through the aqueous EPD (electrophoretic deposition) method with nitric acid as an additive. The EPD kinetics of Co3O4 with different solid loadings in aqueous dispersion was investigated in detail. It was found that more nitric acid needed for the surface charging of more Co3O4 nanoparticles would also significantly change the EPD condition, such as the electric current passing through the cell and the temperature of the suspension that would lead to a serious stability decrease in the EPD system. As a result, the increase in the deposition rate of the Co3O4 coating would be much lower than that in the solid loading. We also suggested that this conclusion may be noteworthy for aqueous EPD of some other nanoparticle kinds.

Notes

Acknowledgements

This work was supported by the Young Scholars Development Fund of SWPU (No. 201799010077), the Scientific Research Foundation and Opening Foundation of Southwest Petroleum University (No. X151518KCL02), advanced Surface Functional Materials Youth Scientific and Innovation Research Team, Southwest Petroleum University (No. 2018CXTD06), the National Natural Science Foundation of China (No. 51774242).

References

  1. 1.
    L.D. Kadam, P. Patil, Thickness-dependent properties of sprayed cobalt oxide thin films. Mater. Chem. Phys. 68, 225–232 (2001)CrossRefGoogle Scholar
  2. 2.
    C.R. Dhas, R. Venkatesh, R. Sivakumar, A.M.E. Raj, C. Sanjeeviraja, Fast electrochromic response of porous-structured cobalt oxide (Co3O4) thin films by novel nebulizer spray pyrolysis technique. Ionics 22, 1911–1926 (2016)CrossRefGoogle Scholar
  3. 3.
    C.R. Dhas, R. Venkatesh, R. Sivakumar, A.M.E. Raj, C. Sanjeeviraja, Effect of solution molarity on optical dispersion energy parameters and electrochromic performance of Co3O4 films. Opt. Mater. 72, 717–729 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Wollenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Bottner, I. Eisele, Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures. Sensor. Actuat. B 93, 442–448 (2002)CrossRefGoogle Scholar
  5. 5.
    T. Gota, M. Chowdhury, T. Ojumu, Non-enzymatic fructose sensor based on Co3O4 thin film. Electroanalysis 29, 2855–2862 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Chowdhury, C. Ossinga, F. Cummings, J. Chamier, M. Kebede, Novel Sn doped Co3O4 thin film for nonenzymatic glucose bio-sensor and fuel cell. Electroanal. 29, 1876–1886 (2017)CrossRefGoogle Scholar
  7. 7.
    G.A. El-Shobaky, N.A.M. Deraz, Surface and catalytic properties of cobaltic oxide supported on an active magnesia. Mater. Lett. 47, 231–240 (2001)CrossRefGoogle Scholar
  8. 8.
    R. Edla, S. Gupta, N. Patel, N. Bazzanella, R. Fernandes, D.C. Kothari, A. Miotello, Enhanced H-2 production from hydrolysis of sodium borohydride using Co3O4 nanoparticles assembled coatings prepared by pulsed laser deposition. Appl. Catal. A 515, 1–9 (2016)CrossRefGoogle Scholar
  9. 9.
    Y.H. Dou, Y.X. Wang, D.L. Tian, J.T. Xu, Z.J. Zhang, Q.N. Liu, B.Y. Ruan, J.M. Ma, Z.Q. Sun, S.X. Dou, Atomically thin Co3O4 nanosheet-coated stainless steel mesh with enhanced capacitive Na+ storage for high-performance sodium-ion batteries. 2D Mater. 4, 015022 (2017)CrossRefGoogle Scholar
  10. 10.
    V.R. Shinde, S.B. Mahadik, T.P. Gujar, C.D. Lokhande, Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl. Surf. Sci. 252, 7487–7492 (2006)CrossRefGoogle Scholar
  11. 11.
    A.A. Yadav, U.J. Chavan, Electrochemical supercapacitive performance of spray deposited Co3O4 thin film nanostructures. Electrochim. Acta 232, 370–376 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Kazazi, A.R. Sedighi, M.A. Mokhtari, Pseudocapacitive performance of electrodeposited porous Co3O4 film on electrophoretically modified graphite electrodes with carbon nanotubes. Appl. Surf. Sci. 441, 251–257 (2018)CrossRefGoogle Scholar
  13. 13.
    R. Edla, N. Patel, M. Orlandi, N. Bazzanella, V. Bello, C. Maurizio, G. Mattei, P. Mazzoldi, A. Miotello, Highly photo-catalytically active hierarchical 3D porous/urchin nanostructured Co3O4 coatingsynthesized by Pulsed Laser Deposition. Appl. Catal. B 166, 475–484 (2015)CrossRefGoogle Scholar
  14. 14.
    T. Warang, N. Patel, R. Fernandes, N. Bazzanella, A. Miotello, Co3O4 nanoparticles assembled coatings synthesized by different techniques for photo-degradation of methylene blue dye. Appl. Catal. B 132, 204–211 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Patel, W.H. Park, A. Ray, J. Kim, J.H. Lee, Photoelectrocatalytic sea water splitting using Kirkendall diffusion grown functional Co3O4 film. Sol. Energy Mat. Sol. C 171, 267–274 (2017)CrossRefGoogle Scholar
  16. 16.
    K.B. Klepper, O. Nilsen, H. Fjellvag, Growth of thin films of Co3O4 by atomic layer deposition. Thin Solid Films 515, 7772–7781 (2007)CrossRefGoogle Scholar
  17. 17.
    M. Buyukyazi, T. Fischer, P.M. Yu, M. Coll, S. Mathur, A cobalt(II) heteroarylalkenolate precursor for homogeneous Co3O4 coatings by atomic layer deposition. Dalton Trans. 46, 12996–13001 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Tototzintle-Huitle, E. Prokhorov, A. Mendoza-Galvan, J.E. Urbina, J. Gonzalez-Hernandez, Study of the formation of Co3O4 thin films using sol-gel method. J. Phys. Chem. Solids 64, 975–980 (2003)CrossRefGoogle Scholar
  19. 19.
    Y. Hwa, W.S. Kim, B.C. Yu, S.H. Hong, H.J. Sohn, Enhancement of the cyclability of a Si anode through Co3O4 coating by the sol gel method. J. Phys. Chem. C 117, 7013–7017 (2013)CrossRefGoogle Scholar
  20. 20.
    D. Barreca, S. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello, Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt(II) precursor by chemical vapor deposition. Chem. Mater. 13, 588–593 (2001)CrossRefGoogle Scholar
  21. 21.
    A.R. Ansari, S. Hussain, M. Imran, M.S. Abdel-wahab, A. Alshahrie, Synthesis, characterization and oxidation of metallic cobalt (Co) thin film into semiconducting cobalt oxide (Co3O4) thin film using microwave plasma CVD. Mater. Res. Express. 5, 065003 (2018)CrossRefGoogle Scholar
  22. 22.
    J.C. Chen, H.W. Du, J.H. Zhang, X.R. Lei, Y. Wang, S. Su, Z.H. Zhang, P. Zhao, Influence of deposition temperature on crystalline structure and morphologies of Co3O4 films prepared by a direct liquid injection chemical vapor deposition. Surf. Coat. Technol. 319, 110–116 (2017)CrossRefGoogle Scholar
  23. 23.
    R.J. Kennedy, The growth of iron-oxide, nickel-oxide and cobalt oxide thin-films by laser-ablation from metal targets. IEEE. Trans. Magn. 31, 3829–3831 (1995)CrossRefGoogle Scholar
  24. 24.
    J.G. Cook, M.P. Vandermeer, The optical-properties of sputtered Co3O4 films. Thin Solid Films 144, 165–176 (1986)CrossRefGoogle Scholar
  25. 25.
    L. Wang, X.C. Song, Y.F. Zheng, Electrochromic properties of nanoporous Co3O4 thin films prepared by electrodeposition method. Micro. Nano. Lett. 7, 1026–1029 (2012)CrossRefGoogle Scholar
  26. 26.
    D.X. Zhang, X.M. Li, X.G. Guo, C. Lai, Fabrication of cobalt oxide (Co3O4) coating by electrophoretic deposition. Mater. Lett. 126, 211–213 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Fayette, A. Nelson, R.D. Robinson, Electrophoretic deposition improves catalytic performance of Co3O4 nanoparticles for oxygen reduction/oxygen evolution reactions. J. Mater. Chem. A 3, 4274–4283 (2015)CrossRefGoogle Scholar
  28. 28.
    A.A.S. Ghazvini, E. Taheri-Nassaj, B. Raissi, R. Riahifar, M.S. Yaghmaee, Effect of polyethylenimine addition and washing on stability and electrophoretic deposition of Co3O4 nanoparticles. J. Am. Ceram. Soc. 101, 553–561 (2018)CrossRefGoogle Scholar
  29. 29.
    S.J. Ciou, K.Z. Fung, K.W. Chiang, Comparison of electrophoretic deposition kinetics of graphene oxide nanosheets in organic andaqueous solutions. Ceram. Int. 44, 10951–10960 (2018)CrossRefGoogle Scholar
  30. 30.
    F. Caubert, P.L. Taberna, L. Arurault, Innovating pulsed electrophoretic deposition of boehmite nanoparticles dispersed in an aqueoussolution, into a model porous anodic film, prepared on aluminium alloy 1050. Surf. Coat. Technol. 302, 293–301 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Mahajan, R. Pinho, M. Dolhen, M.E. Costa, P.M. Vilarinho, Unleashing the full sustainable potential of thick films of lead-free potassium sodium niobate (K0.5Na0.5NbO3) by aqueous electrophoretic deposition. Langmuir. 32, 5241–5249 (2016)CrossRefGoogle Scholar
  32. 32.
    Z. Jian, L. Wei, W. Song, S.X. Wang, Electrophoretic deposition of La2Zr2O7 coating in non-aqueous media on C-f/SiC substrate. Surf. Coat. Technol. 278, 80–86 (2015)CrossRefGoogle Scholar
  33. 33.
    E. Bacha, R. Renoud, H. Terrisse, C. Borderon, M. Richard-Plouet, H. Gundel, L. Brohan, Electrophoretic deposition of BaTiO3 thin films from stable colloidal aqueous solutions. J. Eur. Ceram. Soc. 34, 2239–2247 (2014)CrossRefGoogle Scholar
  34. 34.
    D.X. Zhang, Q. Xiang, X. Fan, X.M. Li, Electrophoretic assembly of B-Ti nanoenergetic coating for micro-ignitor application. Chem. Eng. J. 301, 58–64 (2016)CrossRefGoogle Scholar
  35. 35.
    S. Novak, K. Konig, Fabrication of alumina parts by electrophoretic deposition from ethanol and aqueous suspensions. Ceram. Int. 35, 2823–2829 (2009)CrossRefGoogle Scholar
  36. 36.
    C. Ponzoni, R. Rosa, M. Cannio, V. Buscaglia, E. Finocchio, P. Nanni et al., Electrophoretic deposition of multiferroic BiFeO3 sub-micrometric particles from stabilized suspensions. J. Eur. Ceram. Soc. 33, 1325–1333 (2013)CrossRefGoogle Scholar
  37. 37.
    F.Q. Tang, T. Uchikoshi, K. Ozawa, Y. Sakka, Effect of polyethylenimine on the dispersion and electrophoretic deposition of nano-sized titania aqueous suspensions. J. Eur. Ceram. Soc. 26, 1555–1560 (2016)CrossRefGoogle Scholar
  38. 38.
    X.G. Guo, X.M. Li, Z.S. Xiong, C. Lai, Y. Li, X.Y. Huang, H.B. Bao, Y.J. Yin, Y.H. Zhu, D.X. Zhang, A comprehensive investigation on electrophoretic self-assembled nano-Co3O4 films in aqueous solution as electrode materials for supercapacitors. J. Nanopart. Res. 18, 144 (2016)CrossRefGoogle Scholar
  39. 39.
    Z.T. Zhang, Y. Huang, Z.Z. Jiang, Electrophoretic deposition forming of SiC-TZP composites in a nonaqueous sol media. J. Am. Ceram. Soc. 77, 1946–1949 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouthwest Petroleum UniversityChengduPeople’s Republic of China
  2. 2.College of Environment and ResourcesChongqing Technology and Business UniversityChongqingPeople’s Republic of China
  3. 3.Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China
  4. 4.Sichuan Fine Arts InstituteChongqingPeople’s Republic of China

Personalised recommendations