Evaluation of temperature dependent electrical transport parameters in Fe3O4/SiO2/n-Si metal–insulator-semiconductor (MIS) type Schottky barrier heterojunction in a wide temperature range

  • Nallabala Nanda Kumar ReddyEmail author
  • Srinivas Godavarthi
  • Kesarla Mohan Kumar
  • Venkata Krishnaiah Kummara
  • S. V. Prabhakar VattikutiEmail author
  • Harish Sharma Akkera
  • Yugandhar Bitla
  • S. A. K. Jilani
  • V. Manjunath


In this manuscript, we reported the electrical characteristics and structural analysis of In/Fe3O4/SiO2/n-Si/In MIS-type SBD heterostructure comprehensively in the temperature range 10–300 K using I–V, XRD, TEM and AFM measurements. Pulsed laser deposition in association with DC magnetron sputtering techniques has been utilized to fabricate the proposed In/Fe3O4/SiO2/n-Si/In heterojunction. The fabricated heterojunction revealed that the I–V curves are non-linear and asymmetric in nature. Using these I–V curves in the forward-bias region, SBH is calculated as 0.02 eV at 10 K and 0.74 eV at 300 K. On the other hand, the ideality factor (n) value was calculated as 7.55 at 10 K and 1.37 at 300 K. The series resistance (RS) values were also evaluated using Chenug’s method and the values were 1121 Ω at 10 K and 334 Ω at 300 K. The dependence of important diode parameters such as SBH, ‘n’ and ‘RS’ on measurement temperature was effectively explained firstly on account of triple Gaussian distribution of barrier heights with the help of barrier inhomogeneities of the prepared heterojunction. The value of the Richardson’s constant calculated for the fabricated In/Fe3O4/SiO2/n-Si/In heterojunction in the 110–300 K temperature regime was calculated to be 115.26 A/cm2K2 and is approximately equal to the theoretical value of 120 A/cm2K2 for n-type Si. In addition, the higher value (greater than one) of ideality factor at all operating temperatures from 10–300 K demonstrated that the probable current transport across the Fe3O4/SiO2/n-Si junction is not only due to the thermionic emission (TE) mechanism. Hence, to reveal the origin of current transport mechanism i.e., other than TE, we noticed that the governing current transport process through the fabricated hetrojunction is mainly due to the tunneling assisted Poole–Frenkel class of emission across the Fe3O4/SiO2/n-Si junction which is found to be temperature-dependent.



Dr. Nallabala Nanda Kumar Reddy thankfully acknowledges the financial support from the Department of Science and Technology (DST), Science and Engineering Research Board, Government of India, project No. ECR/2017/002868, the Management of Madanapalle Institute of Technology and Science (MITS, Madanapalle, A.P, India) and V.R. Technologies, Bangalore for their extended technical support. Dr. S. V. Prabhakar Vattikuti thankfully acknowledges the funding from the National Research Foundation of Korea (NRF) and Funded by the Ministry of Science, ICT, and Future Planning (2017R1A2B1004860). Dr. Kesarla Mohan Kumar greatly acknowledge the financial support from the University Grants Commission (UGC), Government of India, MRP project No. 6396/16 (SERO/UGC).


  1. 1.
    A.R. Deniz, Z. Caldiran, Y. Sahin, M. Sinoforoglu, O. Metin, K. Meral, S. Aydogan, The synthesis of the Fe3O4 nanoparticles and the analysis of the current–voltage measurements on Au/Fe3O4/p-Si schottky contacts in a wide temperature range. Metall. Mater. Trans. A 44A, 3809–3814 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Sharma, S.K. Tripathi, Study of barrier inhomogeneities in I-V-T and C-V-T characteristics of Al/Al2O3/PVA:n-ZnSe metal-oxide-semiconductor diode. J. Appl. Phys. 112, 024521 (2012)CrossRefGoogle Scholar
  3. 3.
    S.A. Yerişkin, M. Balbaş, I. Orak, The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. J Mater Sci. (2017). Google Scholar
  4. 4.
    A. Kaya, E. Marıl, S. Altındal, I. Usluc, The comparative electrical characteristics of Au/n-Si (MS) diodes with and without a 2% graphene cobalt-doped Ca3Co4Ga0.001Ox interfacial layer at room temperature. Microelectron. Eng. 149, 166–171 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Cui, Y. Tian, W. Liu, Y. Li, R. Wang, T. Wu, Interface-dependent rectifying TbMnO3-based heterojunctions. AIP Adv. 1, 042129 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Li, L. Duan, Y. Qiu, Mechanisms of charge transport in transition metal oxide doped organic semiconductors. J. Phys. Chem. C 118, 29636–29642 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Tataroglu, F.Z. Pur, The Richardson constant and barrier inhomogeneity at Au/Si3N4/n-Si (MIS) Schottky diodes Phys. Scr. 88, 015801 (2013)Google Scholar
  8. 8.
    C. Bilkan, Y. Badali, S.F. Shablou, Y.A. Kalandaragh, S. Altındal, On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2-PVA/n-Si Schottky barrier diodes. Appl. Phys. A 123, 560 (2017)CrossRefGoogle Scholar
  9. 9.
    F. Cattaruzza, D. Fiorani, A. Flamini, P. Imperatori, G. Scavia, L. Suber, A.M. Testa, Magnetite nanoparticles anchored to crystalline silicon surfaces. Chem. Mater. 17, 3311–3316 (2005)CrossRefGoogle Scholar
  10. 10.
    S. Galvez, R. Zuazo, S. Colera et al., Sharp chemical interface in epitaxial Fe3O4 thin films. Appl. Phys. Lett. 105, 241603 (2014)CrossRefGoogle Scholar
  11. 11.
    A.R. Deniz, Z. Caldıran, O. Metin, K. Meral, S. Aydogan, The investigation of the electrical properties of Fe3O4/n-Si heterojunctions in a wide temperature range. J. Colloid Interface Sci. 473, 172–181 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Ghosh, P.C. Srıvastava, Interface states of Fe3O4/Si interfacial structure and effect of magnetic field. J. Electron. Mater. 43, 11 (2014)CrossRefGoogle Scholar
  13. 13.
    K. Yang, D.H. Kim, J. Dho, Schottky barrier effect on the electrical properties Fe3O4/ZnO and Fe3O4/Nb: SrTiO3 heterostructures. J. Phys. D Appl. Phys. 44, 355301–355306 (2011)CrossRefGoogle Scholar
  14. 14.
    L.B. Zhao, W.B. Mi, E.Y. Jiang, H.L. Bai, Spin-polarized transport of electrons from polycrystalline Fe3O4 to amorphous Si. Appl. Phys. Lett. 91, 052113 (2007)CrossRefGoogle Scholar
  15. 15.
    P.L. Lang, Y.G. Zhao, C.M. Xiong, J. Li, D.N. Zheng, The rectifying property and magnetoresistance of La0.67Ca0.33MnO3/SiO2/Si heterojunction. J. Appl. Phys. 100, 053909 (2006)CrossRefGoogle Scholar
  16. 16.
    T.L. Qu, Y.G. Zhao, H.F. Tian, C.M. Xiong, S.M. Guo, J.Q. Li, Rectifying property and giant positive magnetoresistance of Fe3O4/SiO2/Si heterojunction. Appl. Phys. Lett. 90, 223514 (2007)CrossRefGoogle Scholar
  17. 17.
    V.A. Vikulov, A.A. Dimitriev, V.V. Balashev, T.A. Pisarenko, A.M. Maslov, V.V. Korobtsov, Electrical transport features in Fe3O4/SiO2/n-Si hybrid structure. Solid State Phenomena. 213, 56–59 (2014)CrossRefGoogle Scholar
  18. 18.
    V.A. Vikulov, A.A. Dimitriev, V.V. Balashev, T.A. Pisarenko, V.V. Korobtsov, Low -temperature conducting channel switching in hybrid Fe3O4/SiO2/n-Si structures. Mater. Sci. Eng. B 211, 33 (2016)CrossRefGoogle Scholar
  19. 19.
    H. Qin, C.M. Wang, Q.Q. Dong, L. Zhang, X. Zhang, Z.Y. Ma, Q.R. Han, Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles loaded with isoniazid. J. Magn. Magn. Mater. 381, 120–126 (2015)CrossRefGoogle Scholar
  20. 20.
    S.H. Chaki, T.J. Malek, M.D. Chaudhary, J.P. Tailor, M.P. Deshpande, Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Adv. Nat. Sci. 6, 035009 (2015)Google Scholar
  21. 21.
    E.H. Rhoderick, R.H. Williams, Metal-semiconductor contacts, 2nd edn. (Clarendon Press, Oxford, 1988)Google Scholar
  22. 22.
    M.A. Yeganeh, S.H. Rahmatollahpur, Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes. J. Semicond. 31, 074001 (2010)CrossRefGoogle Scholar
  23. 23.
    S. Mahato, D. Biswas, L.G. Gerling, C. Voz, J. Puigdollers, Analysis of temperature dependent current-voltage and capacitance-voltage characteristics of an Au/V2O5/n-Si Schottky diode. AIP Adv. 7, 085313 (2017)CrossRefGoogle Scholar
  24. 24.
    U. Parihar, J. Ray, C.J. Panchal, N. Padha, Influence of temperature on Al/p-CuInAlSe2 thin-film Schottky diodes. Appl. Phys. A 122, 568 (2016)CrossRefGoogle Scholar
  25. 25.
    S.K. Cheung, N.W. Cheung, Extraction of schottky diode parameters from forward current–voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)CrossRefGoogle Scholar
  26. 26.
    H. Norde, A modified forward I–V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052–5053 (1979)CrossRefGoogle Scholar
  27. 27.
    R.T. Tung, Electron transport at metal-semiconductor interfaces: general theory. Phys. Rev. B 45, 13509 (1992)CrossRefGoogle Scholar
  28. 28.
    C.A. Dimitriadis, S. Logothetidis, I. Alexandrou, Schottky barrier contacts of titanium nitride on n-type silicon. Appl. Phys. Lett. 66, 502 (1995)CrossRefGoogle Scholar
  29. 29.
    O. Demircioglu, S. Karatas, N. Yıldırım, O.F. Bakkaloglu, A. Turut, Temperature dependent current–voltage and capacitance–voltage characteristics of chromium Schottky contacts formed by electrodeposition technique on n-type Si. J. Alloys Compd. 509, 6433–6439 (2011)CrossRefGoogle Scholar
  30. 30.
    R. Kumar, S. Chand, Fabrication and electrical characterization of nickel/p-Si Schottky diode at low temperature. Solid-State Sci. 58, 115–121 (2016)CrossRefGoogle Scholar
  31. 31.
    K. Moraki, S. Bengi, S. Zeyrek, M.M. Bulbul, S. Altındal, Temperature dependence of characteristic parameters of the Au/C20H12/n-Si Schottky barrier diodes (SBDs) in the wide temperature range. J. Mater. Sci. 28, 3987–3996 (2017)Google Scholar
  32. 32.
    V.R. Reddy, N.N.K. Reddy, Current transport mechanisms in Ru/Pd/n-GaN Schottky barrier diodes and deep level defect studies. Superlattices Microstruct. 52, 484–499 (2012)CrossRefGoogle Scholar
  33. 33.
    A. Bobby, S. Verma, K. Asokan, P.M. Sarun, B.K. Antony, Phase transition induced double-Gaussian barrier height distribution in Schottky diode. Phys. B 431, 6–10 (2013)CrossRefGoogle Scholar
  34. 34.
    C. Bilkan, Y. Badali, S.F. Shablou, Y.A. Kalandaragh, S. Altındal, On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2-PVA/n-Si Schottky barrier diodes. Appl. Phys. A 123, 560 (2017)CrossRefGoogle Scholar
  35. 35.
    A. B. Ulusan, A. Tataroglu, Y. A. Kalandaragh, S. Altındal, On the conduction mechanisms of Au/(Cu2O–CuO–PVA)/n-Si (MPS) Schottky barrier diodes (SBDs) using current-voltage-temperature (I-V-T) characteristics, J Mater Sci:Mater Electron,
  36. 36.
    S. Dogan, S. Duman, B. Gurbulak, S. Tuzemen, H. Morkoc, Temperature variation of current–voltage characteristics of Au/Ni/n-GaN Schottky diodes. Physica E 41, 646–651 (2009)CrossRefGoogle Scholar
  37. 37.
    A. Akkaya, E. Ayyıldiz, Effects of post annealing on I-V-T characteristics of (Ni/Au)/Al0.09Ga0.91N Schottky barrier diodes. J. Phys. (2016). Google Scholar
  38. 38.
    N.N.K. Reddy, V.R. Reddy, Barrier characteristics of Pt/Ru Schottky contacts on n-type GaN based on I-V-T and C-V-T measurements. Bull. Mater. Sci. 35, 53–61 (2012)CrossRefGoogle Scholar
  39. 39.
    S.D. Ganichev, E. Ziemann, W. Prettl, I.N. Yassievich, A.A. Istratov, E.R. Weber, Distinction between the Poole-Frenkel and tunneling models of electric-field-stimulated carrier emission from deep levels in semiconductors. Phys. Rev. B 61, 10361 (2000)CrossRefGoogle Scholar
  40. 40.
    G. Chakraborty, S. Chattopadhyay, C.K. Sarkar, C.J. Pramanik, Tunneling current at the interface of silicon and silicon dioxide partly embedded with silicon nanocrystals in metal oxide semiconductor structures. J. Appl. Phys. 101, 024315 (2007)CrossRefGoogle Scholar
  41. 41.
    L. Tsybeskov, G.F. Grom, P.M. Fauchet, J.P.M. Caffrey, J.-M. Baribeau, G.I. Sproule, D.J. Lockwood, Phonon-assisted tunneling and interface quality in nanocrystalline Si/amorphous SiO2 superlattices. Appl. Phys. Lett. 75, 2265 (1999)CrossRefGoogle Scholar
  42. 42.
    J. Panda, S. Chattopadhyay, T.K. Nath, Temperature dependent spin injection properties of the Ni nanodots embedded metallic TiN matrix and p-Si heterojunction. Thin Solid Films 546, 211–218 (2013)CrossRefGoogle Scholar
  43. 43.
    J. Panda, T.K. Nath, Spin transport and temperature-dependent giant positive junction magnetoresistance in CoFeO/SiO/p-Si heterostructure. Appl. Phys. A 122, 1–10 (2016). Google Scholar
  44. 44.
    J. Panda, S.N. Saha, T.K. Nath, Room temperature giant positive junction magnetoresistance of NiFe2O4/n-Si heterojunction for spintronics application. Physica B 488, 184–187 (2014)CrossRefGoogle Scholar
  45. 45.
    A. Ilie, B. Equer, Field-enhanced generation in hydrogenated amorphous silicon. Phys. Rev. B 57, 15349 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nallabala Nanda Kumar Reddy
    • 1
    Email author
  • Srinivas Godavarthi
    • 2
  • Kesarla Mohan Kumar
    • 3
  • Venkata Krishnaiah Kummara
    • 4
  • S. V. Prabhakar Vattikuti
    • 5
    Email author
  • Harish Sharma Akkera
    • 6
  • Yugandhar Bitla
    • 6
  • S. A. K. Jilani
    • 7
  • V. Manjunath
    • 8
  1. 1.Department of PhysicsMadanapalle Institute of Technology and ScienceMadanapalleIndia
  2. 2.CONACYT–Universidad Juárez Autónoma de TabascoCentro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT)CunduacánMexico
  3. 3.Department of ChemistryMadanapalle Institute of Technology and ScienceMadanapalleIndia
  4. 4.Department of PhysicsRajeev Gandhi Memorial College of Engineering and TechnologyNandyalIndia
  5. 5.School of Mechanical EngineeringYeungnam UniversityGyeongsanSouth Korea
  6. 6.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  7. 7.Department of Electronics and Communication EngineeringMadanapalle Institute of Technology and ScienceMadanapalleIndia
  8. 8.Department of PhysicsSri Padmavati Mahila Visvavidyalayam (Womens University)TirupatiIndia

Personalised recommendations