Advertisement

Synthesis of visible light-driven graphene based ZnFe mixed metal oxide for efficient degradation of tetracycline

  • Ying Wei
  • Jianxing Liang
  • Yan Yao
  • Xiangyang Xu
  • Xiaoke Zheng
  • Guangyu HeEmail author
  • Haiqun ChenEmail author
Article
  • 9 Downloads

Abstract

Magnetically separable reduced graphene oxide (RGO)-based ZnFe mixed metal oxide (MMO) nanocomposite (MMO/RGO) was prepared via a scalable and low energy-consuming co-precipitation-calcination process. The preparation procedure can be easily carried out at lower temperature in shorter time compared with those reported in literatures. The structural characterization indicates that ZnFe MMO (i.e., ZnO/ZnFe2O4) heterojunctions are homogeneously distributed as particles with a size in the range of 5–30 nm on the surface of RGO. The ZnFe MMO/RGO nanocomposite exhibits superior photocatalytic performance and stability for the degradation of tetracycline (TC) under visible-light illumination. 100% of the TC molecules is removed after visible-light irradiation for 120 min at 25 °C in the presence of ZnFe MMO/RGO. The photodegradation rate constant is 3.4 times that of ZnFe MMO, suggesting that the synergistic effect between ZnFe MMO and RGO improves the photocatalytic degradation performance of the nanocomposites. Neither toxic chemical reductants nor additional solvents were used during the preparation. More importantly, ZnFe MMO/RGO nanocomposite can be easily recycled by applying an external magnet. This work may provide an environment-friendly low-energy consuming method for large-scale production of MMO/RGO photocatalysts toward the degradation of TC. The photocatalytic mechanism of the ZnFe MMO/RGO nanocomposite was also investigated.

Notes

Acknowledgments

The authors are grateful for the financial support from National Natural Science Foundation of China (Grant Nos. 51572036, 51472035), Changzhou Key Laboratory of Graphene-Based Materials for Environment and Safety (Grant Nos. CM20153006, CE20185043), and PAPD of Jiangsu Higher Education Institution.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S. Reardon, Nature 509, 141 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Chen, W. Lu, X. Wang, W. Chen, Appl. Surf. Sci. 453, 110 (2018)CrossRefGoogle Scholar
  3. 3.
    F. Saadati, N. Keramati, M.M. Ghazi, Crit. Rev. Environ. Sci. Technol. 46, 757 (2016)CrossRefGoogle Scholar
  4. 4.
    Y.-J. Wang, D.-A. Jia, R.-J. Sun, H.-W. Zhu, D.-M. Zhou, Environ. Sci. Technol. 42, 3254 (2008)CrossRefGoogle Scholar
  5. 5.
    R. Daghrir, P. Drogui, Environ. Chem. Lett. 11, 209 (2013)CrossRefGoogle Scholar
  6. 6.
    M.E. Lindsey, M. Meyer, E.M. Thurman, Anal. Chem. 73, 4640 (2001)CrossRefGoogle Scholar
  7. 7.
    X.-S. Miao, F. Bishay, M. Chen, C.D. Metcalfe, Environ. Sci. Technol. 38, 3533 (2004)CrossRefGoogle Scholar
  8. 8.
    S. Rodriguez-Mozaz, S. Chamorro, E. Marti, B. Huerta, M. Gros, A. Sànchez-Melsió, C.M. Borrego, D. Barceló, J.L. Balcázar, Water Res. 69, 234 (2015)CrossRefGoogle Scholar
  9. 9.
    C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39, 4206 (2010)CrossRefGoogle Scholar
  10. 10.
    G. Zhao, C. Li, X. Wu, J. Yu, X. Jiang, W. Hu, F. Jiao, Appl. Surf. Sci. 434, 251 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Liu, J. Kong, J. Yuan, W. Zhao, X. Zhu, C. Sun, J. Xie, Chem. Eng. J. 331, 242 (2018)CrossRefGoogle Scholar
  12. 12.
    J. Zhu, Z. Zhu, H. Zhang, H. Lu, Y. Qiu, L. Zhu, S. Kuppers, J. Colloid Interface Sci. 481, 144 (2016)CrossRefGoogle Scholar
  13. 13.
    Q. Liang, J. Jin, M. Zhang, C. Liu, S. Xu, C. Yao, Z. Li, Appl. Catal. B 218, 545 (2017)Google Scholar
  14. 14.
    Š. Paušová, J. Krýsa, J. Jirkovský, C. Forano, G. Mailhot, V. Prevot, Appl. Catal. B 170-171, 25 (2015)Google Scholar
  15. 15.
    J. Liang, Y. Wei, Y. Yao, X. Zheng, J. Shen, G. He, H. Chen, J. Colloid Interface Sci. 540, 237 (2019)CrossRefGoogle Scholar
  16. 16.
    S. Cho, J.W. Jang, S. Hwang, J.S. Lee, S. Kim, Langmuir 28, 17530 (2012)CrossRefGoogle Scholar
  17. 17.
    G. Fan, W. Sun, H. Wang, F. Li, Chem. Eng. J. 174, 467 (2011)CrossRefGoogle Scholar
  18. 18.
    Y.N. Liang, Y. Li, C. Ang, Y. Shen, D. Chi, X. Hu, A.C.S. Appl, Mater. Interface 6, 12406 (2014)CrossRefGoogle Scholar
  19. 19.
    X. Xiang, L. Xie, Z. Li, F. Li, Chem. Eng. J. 221, 222 (2013)CrossRefGoogle Scholar
  20. 20.
    G. Di, Z. Zhu, H. Zhang, J. Zhu, H. Lu, W. Zhang, Y. Qiu, L. Zhu, S. Küppers, Chem. Eng. J. 328, 141 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Yang, P. Wu, M. Chen, Z. Huang, W. Li, N. Zhu, Y. Ji, RSC Adv. 6, 26495 (2016)CrossRefGoogle Scholar
  22. 22.
    J. Ni, J. Xue, J. Shen, G. He, H. Chen, Appl. Surf. Sci. 441, 599 (2018)CrossRefGoogle Scholar
  23. 23.
    G. Di, Z. Zhu, Q. Huang, H. Zhang, J. Zhu, Y. Qiu, D. Yin, J. Zhao, Sci. Total Environ. 650, 1112 (2019)CrossRefGoogle Scholar
  24. 24.
    Y. Zhu, P. Wu, S. Yang, Y. Lu, W. Li, N. Zhu, Z. Dang, Z. Huang, RSC Adv. 6, 37689 (2016)CrossRefGoogle Scholar
  25. 25.
    M. Lan, G. Fan, L. Yang, F. Li, RSC Adv. 5, 5725 (2015)CrossRefGoogle Scholar
  26. 26.
    S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008)CrossRefGoogle Scholar
  27. 27.
    H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li, Adv. Mater. 20, 3557 (2008)CrossRefGoogle Scholar
  28. 28.
    G. He, H. Chen, J. Zhu, F. Bei, X. Sun, X. Wang, J. Mater. Chem. 21, 14631 (2011)CrossRefGoogle Scholar
  29. 29.
    J. Zhu, Z. Zhu, H. Zhang, H. Lu, W. Zhang, Y. Qiu, L. Zhu, S. Küppers, Appl. Catal. B 225, 550 (2018)CrossRefGoogle Scholar
  30. 30.
    Z. Huang, P. Wu, B. Gong, Y. Fang, N. Zhu, J. Mater. Chem. A 2, 5534 (2014)CrossRefGoogle Scholar
  31. 31.
    J. Liang, Y. Wei, J. Zhang, Y. Yao, G. He, B. Tang, H. Chen, Ind. Eng. Chem. Res. 57, 4311 (2018)CrossRefGoogle Scholar
  32. 32.
    Y. Fu, H. Chen, X. Sun, X. Wang, Appl. Catal. B 111–112, 280 (2012)CrossRefGoogle Scholar
  33. 33.
    J. Ni, J. Xue, L. Xie, J. Shen, G. He, H. Chen, Phys. Chem. Chem. Phys. 20, 414 (2017)CrossRefGoogle Scholar
  34. 34.
    J. Xue, S. Ma, Y. Zhou, Z. Zhang, M. He, A.C.S. Appl, Mater. Interf. 7, 9630 (2015)CrossRefGoogle Scholar
  35. 35.
    D. Jiang, P. Xiao, L. Shao, D. Li, M. Chen, Ind. Eng. Chem. Res. 56, 8823 (2017)CrossRefGoogle Scholar
  36. 36.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  37. 37.
    Q. Yang, S. Wang, F. Chen, K. Luo, J. Sun, C. Gong, F. Yao, X. Wang, J. Wu, X. Li, D. Wang, G. Zeng, Catal. Commun. 99, 15 (2017)CrossRefGoogle Scholar
  38. 38.
    F. Zhang, Y. Zhang, G. Zhang, Z. Yang, D.D. Dionysiou, A. Zhu, Appl. Catal. B 236, 53 (2018)CrossRefGoogle Scholar
  39. 39.
    Y. Zhao, Y. Wei, X. Wu, H. Zheng, Z. Zhao, J. Liu, J. Li, Appl. Catal. B 226, 360 (2018)CrossRefGoogle Scholar
  40. 40.
    H.N. Tien, V.H. Luan, L.T. Hoa, N.T. Khoa, S.H. Hahn, J.S. Chung, E.W. Shin, S.H. Hur, Chem. Eng. J. 229, 126 (2013)CrossRefGoogle Scholar
  41. 41.
    H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Appl. Surf. Sci. 423, 1025 (2017)CrossRefGoogle Scholar
  42. 42.
    H. Chen, W. Liu, Z. Qin, Catal. Sci. Technol. 7, 2236 (2017)Google Scholar
  43. 43.
    E.K. Nyutu, W.C. Conner, S.M. Auerbach, C.-H. Chen, S.L. Suib, J. Phys. Chem. C 112, 1407 (2008)CrossRefGoogle Scholar
  44. 44.
    P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Curr. Appl. Phys. 11, 101 (2011)CrossRefGoogle Scholar
  45. 45.
    G.B.B. Varadwaj, O.A. Oyetade, S. Rana, B.S. Martincigh, S.B. Jonnalagadda, V.O. Nyamori, A.C.S. Appl, Mater. Interface 9, 17290 (2017)CrossRefGoogle Scholar
  46. 46.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)CrossRefGoogle Scholar
  47. 47.
    T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, D.L. Huber, J. Phys. Chem. C 113, 19812 (2009)CrossRefGoogle Scholar
  48. 48.
    M. Kim, C. Lee, J. Jang, Adv. Funct. Mater. 24, 2489 (2014)CrossRefGoogle Scholar
  49. 49.
    S. Wu, X. Shen, G. Zhu, H. Zhou, Z. Ji, K. Chen, A. Yuan, Appl. Catal., B 184, 328 (2016)Google Scholar
  50. 50.
    S. Dong, X. Ding, T. Guo, X. Yue, X. Han, J. Sun, Chem. Eng. J. 316, 778 (2017)CrossRefGoogle Scholar
  51. 51.
    A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Mater. Lett. 238, 159 (2019)CrossRefGoogle Scholar
  52. 52.
    N. Baliarsingh, L. Mohapatra, K. Parida, J. Mater. Chem. A 1, 4236 (2013)CrossRefGoogle Scholar
  53. 53.
    H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4, 380 (2010)CrossRefGoogle Scholar
  54. 54.
    Y. Fu, H. Chen, X. Sun, X. Wang, AIChE J. 58, 3298 (2012)CrossRefGoogle Scholar
  55. 55.
    W.-K. Jo, N.C.S. Selvam, Chem. Eng. J. 317, 913 (2017)CrossRefGoogle Scholar
  56. 56.
    L. Xie, J. Ni, B. Tang, G. He, H. Chen, Appl. Surf. Sci. 434, 456 (2018)CrossRefGoogle Scholar
  57. 57.
    Y. Zhu, J. Xue, T. Xu, G. He, H. Chen, J. Mater. Sci.: Mater. Electron. 28, 8519 (2017)Google Scholar
  58. 58.
    P. Xiao, D. Jiang, L. Ju, J. Jing, M. Chen, Appl. Surf. Sci. 433, 388 (2018)CrossRefGoogle Scholar
  59. 59.
    D. Jiang, B. Wen, Q. Xu, M. Gao, D. Li, M. Chen, J. Alloys Compd. 762, 38 (2018)CrossRefGoogle Scholar
  60. 60.
    Y. Shi, Y. Hu, L. Zhang, Z. Yang, Q. Zhang, H. Cui, X. Zhu, J. Wang, J. Chen, K. Wang, Appl. Clay Sci. 137, 249 (2017)CrossRefGoogle Scholar
  61. 61.
    D. Wang, S. Li, Q. Feng, J. Mater. Sci.: Mater. Electron. 29, 9380 (2018)Google Scholar
  62. 62.
    Y. Guo, J. Li, Z. Gao, X. Zhu, Y. Liu, Z. Wei, W. Zhao, C. Sun, Appl. Catal. B 192, 57 (2016)CrossRefGoogle Scholar
  63. 63.
    E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, J. Hazard. Mater. 136, 85 (2006)CrossRefGoogle Scholar
  64. 64.
    R. Hu, X. Xiao, S. Tu, X. Zuo, J. Nan, Appl. Catal. B 163, 510 (2015)CrossRefGoogle Scholar
  65. 65.
    T. Kanagaraj, S. Thiripuranthagan, Appl. Catal. B 207, 218 (2017)CrossRefGoogle Scholar
  66. 66.
    A. Akyol, M. Bayramoglu, J. Hazard. Mater. 124, 241 (2005)CrossRefGoogle Scholar
  67. 67.
    T. Xu, J. Xue, X. Zhang, G. He, H. Chen, Appl. Surf. Sci. 402, 294 (2017)CrossRefGoogle Scholar
  68. 68.
    Y. Soltanabadi, M. Jourshabani, Z. Shariatinia, Sep. Purif. Technol. 202, 227 (2018)CrossRefGoogle Scholar
  69. 69.
    H. Anwer, J.W. Park, J. Hazard. Mater. 358, 416 (2018)CrossRefGoogle Scholar
  70. 70.
    M. Rahimi-Nasrabadi, M. Rostami, F. Ahmadi, A.F. Shojaie, M.D. Rafiee, J. Mater. Sci.: Mater. Electron. 27, 11940 (2016)Google Scholar
  71. 71.
    J. Li, Z. Liu, Z. Zhu, Rsc Adv. 4, 51302 (2014)CrossRefGoogle Scholar
  72. 72.
    F. Wu, X. Li, W. Liu, S. Zhang, Appl. Surf. Sci. 405, 60 (2017)CrossRefGoogle Scholar
  73. 73.
    P. Xiong, Y. Fu, L. Wang, X. Wang, Chem. Eng. J. 195–196, 149 (2012)CrossRefGoogle Scholar
  74. 74.
    S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, M. Trari, Appl. Energy 87, 2230 (2010)CrossRefGoogle Scholar
  75. 75.
    X. Wang, L. Zhi, K. Müllen, Nano Lett. 8, 323 (2008)CrossRefGoogle Scholar
  76. 76.
    X. She, J. Wu, H. Xu, J. Zhong, Y. Wang, Y. Song, K. Nie, Y. Liu, Y. Yang, M.-T.F. Rodrigues, R. Vajtai, J. Lou, D. Du, H. Li, P.M. Ajayan, Adv. Energy Mater. 7, 1700025 (2017)CrossRefGoogle Scholar
  77. 77.
    F. Dong, Z. Wang, Y. Li, W.K. Ho, S.C. Lee, Environ. Sci. Technol. 48, 10345 (2014)CrossRefGoogle Scholar
  78. 78.
    F. Dong, Z. Zhao, Y. Sun, Y. Zhang, S. Yan, Z. Wu, Environ. Sci. Technol. 49, 12432 (2015)CrossRefGoogle Scholar
  79. 79.
    Y. Huang, D. Zhu, Q. Zhang, Y. Zhang, J-j Cao, Z. Shen, W. Ho, S.C. Lee, Appl. Catal. B 234, 70 (2018)CrossRefGoogle Scholar
  80. 80.
    Z. Wang, W. Guan, Y. Sun, F. Dong, Y. Zhou, W.-K. Ho, Nanoscale 7, 2471 (2015)CrossRefGoogle Scholar
  81. 81.
    T.B. Nguyen, C.P. Huang, R.-A. Doong, Sci. Total Environ. 646, 745 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou UniversityChangzhouChina

Personalised recommendations