Advertisement

The preparation and photocatalytic performance of BiOCl@Ag, a visible-light responsive catalyst

  • Xuan XuEmail author
  • Qiutong Yan
  • Xiaosong Gu
  • Yujie Luo
Article
  • 18 Downloads

Abstract

The effect of noble metal silver (Ag) modification on the photocatalytic performance of layered BiOCl microspheres was investigated herein. BiOCl@Ag, a visible-light-responsive photocatalyst with regular morphology, was prepared via a solvothermal method using BiOCl. Scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and ultraviolet–visible spectroscopy were used to investigate the morphology and light absorption properties of the materials. The degradation rate of RhB was 88.2% after 90 min of visible-light irradiation when BiOCl@Ag was used and only 32.4% when pure BiOCl was used. Photoluminescence and electron spin resonance studies were conducted to determine why the use of BiOCl@Ag resulted in higher photocatalytic activity than the use of pure BiOCl. The results showed the surface plasmon resonance effect of BiOCl@Ag extended the range of visible light absorption. Furthermore, a Schottky barrier was used as a photoelectron capture center to promote the effective separation of photogenerated charges. Finally, the interaction of noble metals and semiconductors increased the activity of oxidizing free radicals on the catalyst surface. This study showed the Ag loading of BiOCl effectively improved the photocatalytic performance of BiOCl.

Notes

Acknowledgements

This work was supported by the Science and Technology Innovation Special Projects of Social Undertakings and Livelihood Support, Chongqing (Grant No. cstc2016shmszx20009), and the Chongqing Research Program of Basic Research and Frontier Technology (Grant Nos. cstc2015jcyjA20013 and cstc2017jcyjBX0080).

References

  1. 1.
    D. Lu, P. Fang, X. Liu, S. Zhai, C. Li, X. Zhao, J. Ding, R. Xiong, A facile one-pot synthesis of TiO2 -based nanosheets loaded with MnxOy nanoparticles with enhanced visible light–driven photocatalytic performance for removal of Cr(VI) or RhB. Appl. Catal. B 179, 558–573 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Shi, Y. Yu, Y. Zhang, X. Feng, X. Zhao, H. Tan, S.U. Khan, Y. Li, E. Wang, Polyoxometalate/TiO2/Ag composite nanofibers with enhanced photocatalytic performance under visible light. Appl. Catal. B 221, 280–289 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Shenawi-Khalil, V. Uvarov, Y. Kritsman, E. Menes, I. Popov, Y. Sasson, A new family of BiO (ClxBr1−x) visible light sensitive photocatalysts. Catal. Commun. 12(12), 1136–1141 (2011)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, X. Yuan, L. Jiang, Z. Wu, X. Chen, H. Wang, H. Wang, G. Zeng, Highly efficient photocatalysis toward tetracycline of nitrogen doped carbon quantum dots sensitized bismuth tungstate based on interfacial charge transfer. J. Colloid Interface Sci. 511, 296–306 (2018)CrossRefGoogle Scholar
  5. 5.
    L. Ge, C. Han, J. Liu, Y. Li, Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl. Catal. A 409, 215–222 (2011)CrossRefGoogle Scholar
  6. 6.
    R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Spatial separation of photogenerated electrons and holes among{010}and{110}crystal facets of BiVO4. Nat. Commun. 4, 1432–1439 (2013)CrossRefGoogle Scholar
  7. 7.
    H. Yu, C. Cao, X. Wang, J. Yu, Ag-modified BiOCl single-crystal nanosheets: dependence of photocatalytic performance on the region-selective deposition of Ag nanoparticles. J. Phys. Chem. C 121(24), 13191–13201 (2017)CrossRefGoogle Scholar
  8. 8.
    K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B 68, 125–129 (2006)CrossRefGoogle Scholar
  9. 9.
    T.B. Li, G. Chen, C. Zhou, Z.Y. Shen, R.C. Jin, J.X. Sun, New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Trans. 40, 6751–6759 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Jiang, K. Zhao, X. Xiao, L. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 134(10), 4473–4476 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Sun, S. Wu, S.Z. Yang, L. Sun, Enhanced photocatalytic activity induced by sp3 to sp2 transition of carbon dopants in BiOCl crystals. Appl. Catal. B 221, 467–472 (2018)CrossRefGoogle Scholar
  12. 12.
    B. Shi, H. Yin, T. Li, J. Gong, Q. Nie, Synergistically enhanced visible light photocatalytic activity by surface plasmon and facet dependent oxygen vacancy on Ag/BiOCl. Mater. Technol. 32(7), 415–423 (2017)CrossRefGoogle Scholar
  13. 13.
    D. Wu, L. Ye, S. Yue, B. Wang, W. Wang, H.Y. Yip, P.K. Wong, Alkali-induced in situ fabrication of Bi2O4-decorated BiOBr nanosheets with excellent photocatalytic performance. J. Phys. Chem. C 120(14), 7715–7727 (2016)CrossRefGoogle Scholar
  14. 14.
    T. Hirakawa, P.V. Kamat, Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J. Am. Chem. Soc. 127(11), 3928–3934 (2005)CrossRefGoogle Scholar
  15. 15.
    L. Ren, D. Zhang, X. Hao, X. Xiao, Y. Jiang, J. Gong, F. Zhang, X. Zhang, Z. Tong, Facile synthesis of flower-like Pd/BiOCl/BiOI composites and photocatalytic properties. Mater. Res. Bull 94, 183–189 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Di, J. Xie, M. Ji, B. Wang, S. Yin, Y. Huang, Z. Chen, H. Li, New insight of Ag quantum dots with the improved molecular oxygen activation ability for photocatalytic applications. Appl. Catal. B 188, 376–387 (2016)CrossRefGoogle Scholar
  17. 17.
    C.Y. Wang, Y.J. Zhang, W.K. Wang, D.N. Pei, Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation. Appl. Catal. B 221, 320–328 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Gnanaprakasam, V.M. Sivakumar, M. Thirumarimurugan, Facile one-step synthesis of Nd-doped BiOCl nanoparticles with the excellent photocatalytic behavior. Asia-Pac. J. Chem. Eng. 12(5), 723–731 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Zhao, Y. Zhang, Y. Zhou, K. Qiu, Reactable polyelectrolyte-assisted preparation of flower-like Ag/AgCl/BiOCl composite with enhanced photocatalytic activity. J. Photochem. Photobiol. A 350, 94–102 (2018)CrossRefGoogle Scholar
  20. 20.
    X. Zhang, Z. Ai, F. Jia, L. Zhang, Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 112(3), 747–753 (2008)CrossRefGoogle Scholar
  21. 21.
    J. Qin, H. Zeng, Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation. Appl. Catal. B 209, 161–173 (2017)CrossRefGoogle Scholar
  22. 22.
    L. Yang, J. Lv, Y. Sui, W. Fu, Ag–Cu2O composite microstructures with tunable Ag contents: synthesis and surface-enhanced (resonance) Raman scattering (SE(R)RS) properties. RSC Adv. 4(33), 17249 (2014)CrossRefGoogle Scholar
  23. 23.
    T.T.A.K. Tadashi Watanabe, Photocatalysis through excitation of adsorbates. 1. highly efficient N-deethylation of rhodamine B adsorbed to CdS. J. Phys. Chem. 81(19), 1845–1851 (1977)CrossRefGoogle Scholar
  24. 24.
    Z. Xu, S.Y. Lin, Construction of AgCl/Ag/BiOCl with a concave-rhombicuboctahedron core–shell hierarchitecture and enhanced photocatalytic activity. RSC Adv. 6(88), 84738–84747 (2016)CrossRefGoogle Scholar
  25. 25.
    H.M. Sung-Suh, J.R. Choi, H.J. Hah, S.M. Koo, Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J. Photochem. Photobiol. A 163(1–2), 37–44 (2004)CrossRefGoogle Scholar
  26. 26.
    C. Hu, Y. Lan, J. Qu, X. Hu, A. Wang, Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J. Phys. Chem. B 110, 4066–4072 (2006)CrossRefGoogle Scholar
  27. 27.
    K. Zhao, L. Zhang, J. Wang, Q. Li, W. He, J.J. Yin, Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 135(42), 15750–15753 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Q. Zhang, Z. Chen, H. Li, Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Appl. Mater. Interfaces 7(36), 20111–20123 (2015)CrossRefGoogle Scholar
  29. 29.
    G. Chen, M. Zhu, X. Wei, Photocatalytic properties of attached BiOCl-(0 0 1) nanosheets onto AgBr colloidal spheres toward MO and RhB degradation under an LED irradiation. Mater. Lett. 212, 182–185 (2018)CrossRefGoogle Scholar
  30. 30.
    W.T. Li, W.Z. Huang, H. Zhou, H.Y. Yin, Y.F. Zheng, X.C. Song, Synthesis of Zn2+ doped BiOCl hierarchical nanostructures and their exceptional visible light photocatalytic properties. J. Alloys Compd. 638, 148–154 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Urban Construction and Environmental EngineeringChongqing UniversityShapingbaChina

Personalised recommendations