Advertisement

Investigation of physical properties and surface free energy of produced ITO thin films by TVA technique

  • Saliha Elmas
  • Şadan Korkmaz
  • Suat PatEmail author
Article
  • 22 Downloads

Abstract

In this study, tin-doped indium oxide (ITO) thin films with composition of 10% SnO2 and 90% In2O3 have been produced onto glass, polyethylene terephthalate (PET) and Silicon (Si) substrates by using thermionic vacuum arc technique. The properties of the ITO thin films were determined various tolls such as an X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectrophotometer, optical reflectometer, field emission electron microscopy (FESEM), atomic force microscopy, four-point probe and contact angle (CA) measurements devices. According to the XRD patterns, deposited thin films onto glass, PET and Si substrate are in amorphous structure. The thicknesses of the deposited layers are very close to each other’s and films. The transmittance values are approximately 30% at 632 nm. Refractive index of the deposited layers are close to 1.75, but optical band gaps are found 3.88 and 3.81 eV for the thin film deposited onto glass and PET substrate, respectively. These values are bigger than the value of the band gap value of the ITO material. In surface analysis, it was found that crystallite dimensions are in nano-scales. According to surface analysis, nano-crystalline ITO thin films were deposited. The contact angle of the coated ITO layer were measured in the range of 98°–110°. The electrical resistivity of films was calculated about 0.65 × 10−5 Ω cm for ITO/glass, 1.05 × 10−5 Ω cm for ITO/PET and 5.82 × 10−5 Ω cm for ITO/Si.

Notes

References

  1. 1.
    K.S. Tseng, Y.L. Lo, Appl. Surf. Sci. 285P, 157–166 (2013)CrossRefGoogle Scholar
  2. 2.
    S.D. Senol, A. Senol, O. Ozturk, M. Erdem, J. Mater. Sci.: Mater. Electron. 25, 4992–4999 (2014)Google Scholar
  3. 3.
    A. Kosarian, M. Shakiba, E. Farshidi, J. Mater. Sci.: Mater. Electron. 28, 787–797 (2017)Google Scholar
  4. 4.
    K.P. Sibin, G. Srinivas, H.D. Shashikala, A. Dey, N. Sridhara, A.K. Sharma, H.C. Barshilia, Sol. Energy Mater. Sol. Cells 172, 277–284 (2017)CrossRefGoogle Scholar
  5. 5.
    C. McDonnell, D. Milne, C. Prieto, H. Chan, D. Rostohar, G.M. O’Connor, Appl. Surf. Sci. 359, 567–575 (2015)CrossRefGoogle Scholar
  6. 6.
    A.P. Amalathas, M.M. Alkaisi, J. Mater. Sci.: Mater. Electron. 27, 11064–11071 (2016)Google Scholar
  7. 7.
    A. Bera, K. Deb, V. Kathirvel, T. Bera, R. Thapa, B. Saha, Appl. Surf. Sci. 418, 264–269 (2017)CrossRefGoogle Scholar
  8. 8.
    L. Hao, X. Diao, H. Xu, B. Gu, T. Wang, Appl. Surf. Sci. 254, 3504–3508 (2008)CrossRefGoogle Scholar
  9. 9.
    E. Celik, U. Aybarc, M.F. Ebeoglugil, I. Birlik, O. Culha, J. Sol-Gel. Sci. Technol. 50, 337–347 (2009)CrossRefGoogle Scholar
  10. 10.
    K. Füchsel, U. Schulz, N. Kaiser, A. Tünnermann, Appl. Opt. 47, C297–C302 (2008)CrossRefGoogle Scholar
  11. 11.
    D.C. Paine, T. Whitson, D. Janiac, R. Beresford, C.O. Yang, B. Lewis, J. Appl. Phys. 85, 8445–8450 (1999)CrossRefGoogle Scholar
  12. 12.
    M. Quaas, C. Eggs, M.L. Ma, H. Wulff, Thin Solid Films 322, 277 (1998)CrossRefGoogle Scholar
  13. 13.
    V. Sittinger, F. Ruske, W. Werner, C. Jacobs, B. Szyszka, D.J. Christie, Thin Solid Films 516, 5847–5859 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Ray, R. Banerjee, N. Basu, A.K. Batabyal, A.K. Barua, J. Appl. Phys. 54, 3497 (1983)CrossRefGoogle Scholar
  15. 15.
    Y. Hu, X. Diao, C. Wang, W. Hao, T. Wang, Vacuum 75, 183 (2004)CrossRefGoogle Scholar
  16. 16.
    M. Gulen, G. Yildirim, S. Bal, A. Varilci, I. Belenli, M. Oz, J. Mater. Sci.: Mater. Electron. 24, 467 (2013)Google Scholar
  17. 17.
    T.K. Yong, T.Y. Tou, R.B. Yang, B.S. Teo, H.K. Yow, Vacuum 82, 1445–1448 (2008)CrossRefGoogle Scholar
  18. 18.
    J.P. Zheng, H.S. Kwok, Appl. Phys. Lett. 63, 1 (1993)CrossRefGoogle Scholar
  19. 19.
    S. Major, K.L. Chopra, Sol. Energy Mater. 17, 319 (1988)CrossRefGoogle Scholar
  20. 20.
    Y. Djaoued, V.H. Phong, S. Badilescu, P.V. Ashrit, F.E. Girouard, V.V. Truong, Thin Solid Films 293, 108 (1997)CrossRefGoogle Scholar
  21. 21.
    J. Vetrone, Y.W. Chung, J. Vac. Sci. Technol. A9, 3041 (1991)CrossRefGoogle Scholar
  22. 22.
    S.F. Tseng, W.T. Hsiao, K.C. Huang, D. Chiang, M.F. Chen, C.P. Chou, Appl. Surf. Sci. 257, 1487–1494 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Aleksandrova, N. Kurtev, V. Videkov, S. Tzanova, S. Schintke, Microelectron. Eng. 145, 112–116 (2015)CrossRefGoogle Scholar
  24. 24.
    Y.S. Tsai, F.S. Juang, T.H. Yang, M.C. Yokoyama, L.W. Ji, Y.K. Su, J. Phys. Chem. Solids 69, 764–768 (2008)CrossRefGoogle Scholar
  25. 25.
    G.J. Exarhos, X.D. Zhou, Thin Solid Films 515, 7025–7052 (2007)CrossRefGoogle Scholar
  26. 26.
    Y.H. Tak, K.B. Kim, H.G. Park, K.H. Lee, J.R. Lee, Thin Solid Films 411, 12–16 (2002)CrossRefGoogle Scholar
  27. 27.
    H. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films (Institute of Physics, Bristol, 1995), p. 181Google Scholar
  28. 28.
    M. Gaillet, L. Yan, E. Teboul, Thin Solid Films 516, 170–174 (2007)CrossRefGoogle Scholar
  29. 29.
    K. Iiyama, T. Ishida, Y. Ono, T. Maruyama, T. Yamagishi, IEEE Photon. Technol. Lett. 23, 275–277 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Pat, N. Ekem, T. Akan, Ö. Küsmüs, S. Demirkol, R. Vladoiu, C.P. Lungu, G. Musa, J. Optoelectron. Adv. Mater. 7, 2495–2499 (2005)Google Scholar
  31. 31.
    V. Şenay, S. Özen, S. Pat, Ş. Korkmaz, J. Alloys Compd. 663, 829–833 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Elmas, S. Korkmaz, S. Pat, Appl. Surf. Sci. 276, 641–645 (2013)CrossRefGoogle Scholar
  33. 33.
    R. Mohammadigharehbagh, S. Özen, H.H. Yudar, S. Pat, Ş. Korkmaz, J. Mater. Sci.: Mater. Electron. 28, 14131–14137 (2017)Google Scholar
  34. 34.
    E. Şilik, S. Pat, S. Özen, R. Mohammadigharehbagh, H.H. Yudar, C. Musaoğlu, Ş. Korkmaz, Thin Solid Films 640, 27–32 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Özen, S. Pat, H.H. Yudar, Ş. Korkmaz, Z. Pat, Vacuum 153, 112–116 (2018)CrossRefGoogle Scholar
  36. 36.
    M.Z. Balbag, S. Pat, M. Ozkan, N. Ekem, G. Musa, Phys. B Condens. Matter 405, 3276–3278 (2010)CrossRefGoogle Scholar
  37. 37.
    S. Pat, S. Özen, Ş. Korkmaz, J. Electron. Mater. 47, 167–172 (2018)CrossRefGoogle Scholar
  38. 38.
    S. Özen, S. Pat, V. Şenay, Ş. Korkmaz, Vacuum 135, 50–54 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Elmas, S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, M. Özgür, U. Demirkol, S. Özen, Ş. Korkmaz, Phys. B 557, 27–33 (2019)CrossRefGoogle Scholar
  40. 40.
    U. Demirkol, S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, M. Özgür, S. Elmas, S. Özen, Ş. Korkmaz, J. Mater. Sci.: Mater. Electr. 29, 18098–18104 (2018)Google Scholar
  41. 41.
    M. Ozgür, S. Pat, R. Mohammadigharehbagh, C. Musaoglu, U. Demirkol, S. Elmas, S. Ozen, S. Korkmaz, J. Alloys Compd. 2019(774), 1017–1023 (2018)Google Scholar
  42. 42.
    S.H. Mohamed, F.M. El-Hossary, G.A. Gamal, M.M. Kahlid, Acta Phys. Pol., A 115, 704–708 (2009)CrossRefGoogle Scholar
  43. 43.
    Refractive index database. http://refractiveindex.info/. Accessed 1 August 2018
  44. 44.
    V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraj, Vacuum 84, 864–869 (2010)CrossRefGoogle Scholar
  45. 45.
    H.R. Fallah, M.G. Varnamkhasti, M.J. Vahid, Renew. Energy 35, 1527–1530 (2010)CrossRefGoogle Scholar
  46. 46.
    H.R. Fallah, M. Ghasemi, A. Hassanzadeh, H. Steki, Phys. B 373, 274–279 (2006)CrossRefGoogle Scholar
  47. 47.
    Y.T. Cheng, J.J. Ho, C.K. Wang, W. Lee, CCh. Lu, B.S. Yau, J.L. Nain, S.H. Chang, C.C. Chang, K.L. Wang, Appl. Surf. Sci. 256, 7606–7611 (2010)CrossRefGoogle Scholar
  48. 48.
    Z.Z. You, J.Y. Dong, Appl. Surf. Sci. 253, 2102–2107 (2006)CrossRefGoogle Scholar
  49. 49.
    Z.Z. You, Mater. Lett. 61, 3809–3814 (2007)CrossRefGoogle Scholar
  50. 50.
    D. Ebert, B. Bhushan, Langmuir 28, 11391–11399 (2012)CrossRefGoogle Scholar
  51. 51.
    P. Vacca, M. Petrosino, A. Guerra, R. Chierchia, C. Minarini, D.D. Sala, A. Rubino, J. Phys. Chem. C 111, 17404–17408 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsEskisehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations