Advertisement

119Sn and 57Fe Mӧssbauer study of highly conductive vanadate glass

  • Tetsuaki NishidaEmail author
  • Yuki Fujita
  • Sachiya Shiba
  • Sayaka Masuda
  • Naomi Yamaguchi
  • Tomoka Izumi
  • Shiro Kubuki
  • Nobuto Oka
Article
  • 16 Downloads

Abstract

57Fe Mössbauer spectra of 20BaO·3SnO2·7Fe2O3·70V2O5 glass measured at room temperature shows a marked decrease in quadrupole splitting (Δ) of iron (III) from 0.71 to 0.57 and 0.58 (± 0.02) mm s−1 after isothermal annealing at 500 °C for 30 and 60 min, respectively. The Δ value also shows a decrease from 0.71 to 0.65 and 0.60 (± 0.02) mm s−1 after the annealing at 450 °C for 30 and 60 min, respectively. These results reflect decreased distortion of FeO4 and VO4 tetrahedra or structural relaxation of the 3D-network (skeleton). 119Sn Mössbauer spectra of 20BaO·3SnO2·7Fe2O3·70V2O5 glass are comprised of a broad singlet due to distorted SnIVO6 octahedra, which have an identical Δ of 0.51 (± 0.02) mm s−1 irrespective of the annealing at 450 and 500 °C. These Mössbauer studies reveal that FeIII atoms occupy network former (NWF) sites by sharing corner oxygen atoms with VIV and VV atoms to constitute the 3D-network, while SnIV atoms are ionically bonded to the oxygen atoms at “interstitial” sites to play a role of network modifier (NWM). A marked decrease in the DC-resistivity (ρ) from 1.7 MΩ cm to 5.6 and 5.0 Ω cm was observed at room temperature after isothermal annealing at 500 °C for 15 and 30 min, respectively. This is attributed to an increase in the carrier mobility associated with the wide isotropic 5s orbitals of SnIV atoms occupying NWM sites in addition to the increased carrier density caused by the structural relaxation of the 3D-network.

Notes

References

  1. 1.
    T. Nishida, J. Non-Cryst. Solids 108(1), 87 (1989)CrossRefGoogle Scholar
  2. 2.
    T. Nishida, J. Radioanal. Nucl. Chem. 182, 451 (1994)CrossRefGoogle Scholar
  3. 3.
    T. Nishida, in Mossbauer Spectroscopy of Sophisticated Oxides, ed. by A. Vértes, Z. Homonnay (Akadémiai Kiadó, Budapest, 1997), pp. 27–87Google Scholar
  4. 4.
    T. Nishida, in Introduction to the Mössbauer Spectroscopy: Principles and Applications-, ed. by F.E. Fujita (Agne Gijutsu Center, Tokyo, 1999), pp. 169–266. (in Japanese) Google Scholar
  5. 5.
    T. Nishida, H. Ide, Y. Takashima, Bull. Chem. Soc. Jpn 63, 548 (1990)CrossRefGoogle Scholar
  6. 6.
    T. Nishida, M. Suzuki, S. Kubuki, M. Katada, Y. Maeda, J. Non-Cryst. Solids 194, 23 (1996)CrossRefGoogle Scholar
  7. 7.
    I. Furumoto, S. Kubuki, T. Nishida, Radioisotopes 61, 463 (2012)CrossRefGoogle Scholar
  8. 8.
    T. Nishida, S. Kubuki, K. Matsuda, Y. Otsuka, Croat. Chem. Acta 88(4), 427 (2015)CrossRefGoogle Scholar
  9. 9.
    K. Matsuda, S. Kubuki, T. Nishida, AIP Conf. Proc. 1622(msms2014), 3 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Nishida, Y. Izutsu, M. Fujimura, K. Osouda, Y. Otsuka, S. Kubuki, N. Oka, Pure Appl. Chem. 89(4), 419 (2017).  https://doi.org/10.1515/pac-2016-0916 CrossRefGoogle Scholar
  11. 11.
    T. Nishida, J. Kubota, Y. Maeda, F. Ichikawa, T. Aomine, J. Mater. Chem. 6, 1889 (1996)CrossRefGoogle Scholar
  12. 12.
    K. Fukuda, A. Ikeda, T. Nishida, Solid State Phenom. 90&91, 215 (2003)CrossRefGoogle Scholar
  13. 13.
    T. Nishida, Japanese Patent Nos. 3854985 (2006) and 5164072 (2012)Google Scholar
  14. 14.
    T. Nishida, S. Kubuki, in Mössbauer spectroscopy: Applications, chemistry, Biology, and nanotechnology, ed. by V.K. Sharma, G. Klingelhöfer, T. Nishida (Wiley, Hoboken, 2013), pp. 542–551CrossRefGoogle Scholar
  15. 15.
    S. Kubuki, H. Sakka, K. Tsuge, Z. Homonnay, K. Sinkó, E. Kuzmann, H. Yasumitsu, T. Nishida, J. Ceram. Soc. Jpn. 115(11), 776 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Kubuki, K. Matsuda, K. Akiyama, T. Nishida, J. Radioanal. Nucl. Chem. 299(1), 453 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Kubuki, H. Masuda, T. Nishida, J. Radioanal. Nucl. Chem. 295(2), 1123 (2013).  https://doi.org/10.1007/s10967-012-1887-7 CrossRefGoogle Scholar
  18. 18.
    S. Kubuki, H. Masuda, K. Akiyama, I. Furumoto, T. Nishida, Hyperfine Interact. 207, 61 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Kubuki, K. Matsuda, K. Akiyama, Z. Homonnay, K. Sinkó, E. Kuzmann, T. Nishida, J. Non-Cryst. Solids 378, 227 (2013)CrossRefGoogle Scholar
  20. 20.
    K. Osouda, S. Kubuki, K. Akiyama, and T. Nishida, Mediterranean conference on the applications of the Mössbauer effect, 31 May–3 June, 2016, Cavtat (Croatia)Google Scholar
  21. 21.
    Y. Fujita, S. Masuda, H. Miyamoto, S. Kubuki, T. Nishida, N. Oka, Phys. Status Solidi A 216, 1800157 (2019).  https://doi.org/10.1002/pssa.201800157 Google Scholar
  22. 22.
    T. Nishida, I. Furumoto, Y. Fujita, S. Kubuki, N. Oka, J. Mater. Sci.: Mater. Electron. 29(4), 2654 (2018).  https://doi.org/10.1007/s10854-017-8191-9 Google Scholar
  23. 23.
    N.F. Mott, Adv. Phys. 16(61), 49 (1967)CrossRefGoogle Scholar
  24. 24.
    C. Prescher, C. McCammon, L. Dubrovinsky, J. Appl. Crystallogr. 45, 329 (2012)CrossRefGoogle Scholar
  25. 25.
    C.V. Ramana, R.J. Smith, O.M. Hussain, C.C. Chusuei, C.M. Julien, Chem. Mater. 17, 1213 (2005)CrossRefGoogle Scholar
  26. 26.
    W.B. Ingler Jr., S. Khan, Thin Solid Films 461(2), 301 (2004)CrossRefGoogle Scholar
  27. 27.
    N.J. Cherepy, D.B. Liston, J.A. Lovejoy, H. Deng, J.Z. Zhang, J. Phys. Chem. B 102, 770 (1998)CrossRefGoogle Scholar
  28. 28.
    Y.K. Jeong, G.M. Choi, J. Phys. Chem. Solids 57(1), 81 (1996)CrossRefGoogle Scholar
  29. 29.
    Y.S. Chaudhary, A. Agrawal, R. Shrivastav, V.R. Satsangi, S. Dass, Int. J. Hydrog. Energy 29, 131 (2004)CrossRefGoogle Scholar
  30. 30.
    T.D. Golden, M.G. Shumsky, Y. Zhou, R.A. VanderWerf, R.A. Van Leeuwen, J.A. Switzer, Chem. Mater. 8, 2499 (1996)CrossRefGoogle Scholar
  31. 31.
    A. Szekeres, T. Ivanova, K. Gesheva, J. Solid State Electrochem. 7(1), 17 (2002)CrossRefGoogle Scholar
  32. 32.
    C. Julien, A. Khelfa, O.M. Hussain, G.A. Nazri, J. Cryst. Growth 156(3), 235 (1995)CrossRefGoogle Scholar
  33. 33.
    D. Shinohara, S. Fujita, Jpn. J. Appl. Phys. 47(9), 7311 (2008)CrossRefGoogle Scholar
  34. 34.
    H.H. Tippins, Phys. Rev. 140, A316 (1965)CrossRefGoogle Scholar
  35. 35.
    T. Lange, W. Njoroge, H. Weis, M. Beckers, M. Wuttig, Thin Solid Films 365, 82 (2000)CrossRefGoogle Scholar
  36. 36.
    V. Srikant, D.R. Clarke, J. Appl. Phys. 83(10), 5447 (1998)CrossRefGoogle Scholar
  37. 37.
    D.C. Look, Mater. Sci. Eng. B80, 383 (2001)CrossRefGoogle Scholar
  38. 38.
    S.S. Pan, C. Ye, X.M. Teng, H.T. Fan, G.H. Li, Appl. Phys. A 85(1), 21 (2006)CrossRefGoogle Scholar
  39. 39.
    H. Zhu, D. Yang, G. Yu, H. Zhang, K. Yao, Nanotechnology 17(9), 2386 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tetsuaki Nishida
    • 1
    Email author
  • Yuki Fujita
    • 1
  • Sachiya Shiba
    • 2
  • Sayaka Masuda
    • 1
  • Naomi Yamaguchi
    • 1
  • Tomoka Izumi
    • 1
  • Shiro Kubuki
    • 2
  • Nobuto Oka
    • 1
  1. 1.Department of Biological and Environmental Chemistry, Faculty of Humanity-oriented Science and EngineeringKindai UniversityIizukaJapan
  2. 2.Department of Chemistry, Graduate School of Science and EngineeringTokyo Metropolitan UniversityHachi-OjiJapan

Personalised recommendations