Advertisement

Synthesis, structure, optical, voltammetric and photocatalytic properties of manganese-activated ZnO

  • Olga I. Gyrdasova
  • Natalya S. Sycheva
  • Inna V. BaklanovaEmail author
  • Larisa Yu. Buldakova
  • Mikhail Yu. Yanchenko
  • Ksenya V. Nefedova
  • Vladimir N. Krasil’nikov
Article
  • 46 Downloads

Abstract

Solid solutions Zn1−xMnxO (0 ≤ x ≤ 0.05) and composite materials Zn1−xMnxO:Mn3O4 have been synthesized by the precursor technology using mixed formate glycolate Zn1−xMnx(HCOO)(OCH2CH2O)1/2, glycolate Zn1−xMnx(OCH2CH2O) and glycerolate Zn1−xMnx(OCH2OCHCH2OH) (0 ≤ x ≤ 0.2) as precursors. The XRD patterns of all the samples confirmed the formation of ZnO wurtzite-type structure. They exhibited a high photocatalytic activity both under ultraviolet and visible irradiation. According to the voltammetry data, all the examined compounds contain Mn3+ ions in the surface layer, whose concentration increases upon transition to composites.

Notes

Acknowledgement

The X-ray study was carried out at the multiple-access centre for X-ray structure analysis at the Institute of Solid State Chemistry, UB RAS (Ekaterinburg, Russia). The absorption spectra were recorded in the Joint-Use Center for Spectroscopy and Analysis of organic compounds of Institute of Organic Synthesis of RAS (Ural Division). This work was carried out in accordance with the research plans and state assignment of the Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences (Grant No. 0397-2019-0003).

References

  1. 1.
    J.J. Schneider, R.C. Hoffmann, J. Engstler, S. Dilfer, A. Klyszcz, E. Erdem, P. Jakes, R.A. Eichel, Zinc oxide derived from single source precursor chemistry under chimie douce conditions: formation pathway, defect chemistry and possible applications in thin film printing. J. Mater. Chem. 19, 1449–1450 (2009).  https://doi.org/10.1039/B816376F CrossRefGoogle Scholar
  2. 2.
    S.-Q. Liu, Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants. Environ. Chem. Lett. 10, 209–216 (2012).  https://doi.org/10.1007/s10311-011-0348-9 CrossRefGoogle Scholar
  3. 3.
    Y.M. Hunge, Photoelectrocatalytic degradation of methylene blue using spray deposited ZnO thin films under UV illumination. MOJ Polym. Sci. 1(4), 135–139 (2017).  https://doi.org/10.15406/mojps.2017.01.00020 Google Scholar
  4. 4.
    Y. Chen, D. Bagnall, T. Yao, ZnO as a novel photonic material for the UV region. Mater. Sci. Eng. B. 75, 190–198 (2000).  https://doi.org/10.1016/S0921-5107(00)00372-X CrossRefGoogle Scholar
  5. 5.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation. Ultrason. Sonochem. 45, 116–122 (2018).  https://doi.org/10.1016/j.ultsonch.2018.02.052 CrossRefGoogle Scholar
  6. 6.
    Y.M. Hunge, V.L. Mathe, A.A. Yadav, S.B. Kulkarni, A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications. Sen. Actuators B 274, 1–9 (2018).  https://doi.org/10.1016/j.snb.2018.07.117 CrossRefGoogle Scholar
  7. 7.
    R. Shidpour, A. Simchi, F. Ghanbari, M. Vossoughi, Photo-degradation of organic dye by zinc oxide nanosystems with special defect structure: effect of the morphology and annealing temperature. Appl. Catal. A 472, 198–204 (2014).  https://doi.org/10.1016/j.apcata.2013.12.003 CrossRefGoogle Scholar
  8. 8.
    R.Z. Khan, S. Fashu, Z.U. Rehman, A. Khan, M.U. Rahman, Structure and magnetic properties of (Co, Mn) co-doped ZnO diluted magnetic semiconductor nanoparticles. J. Mater. Sci.: Mater. Electron. 29, 32–37 (2018).  https://doi.org/10.1007/s10854-017-7884-4 Google Scholar
  9. 9.
    Q. Ma, X. Yang, X. Lu, H. Jia, Y. Wang, Cu doped ZnO hierarchical nanostructures: morphological evolution and photocatalytic property. J. Mater. Sci.: Mater. Electron. 30, 2309–2315 (2019).  https://doi.org/10.1007/s10854-018-0503-1 Google Scholar
  10. 10.
    M.A. Awad, A.M. Ahmed, V.O. Khavrus, E.M.M. Ibrahim, Tuning the morphology of ZnO nanostructure by in doping and the associated variation in electrical and optical properties. Ceram. Int. 41, 10116–10124 (2015).  https://doi.org/10.1016/j.ceramint.2015.04.108 CrossRefGoogle Scholar
  11. 11.
    M. Khaksar, M. Amini, Davar M. Boghaei, Efficient and green oxidative degradation of methylene blue using Mn-doped ZnO nanoparticles (Zn1-xMnxO). J. Exp. Nanosci. 10, 1256–1268 (2015).  https://doi.org/10.1080/17458080.2014.998300 CrossRefGoogle Scholar
  12. 12.
    S. Thongjamroon, J. Ding, T.S. Herng, I.M. Tang, S. Thongm, Dependence of the magnetic properties of the dilute magnetic semiconductor Zn1-xMnxO nanorods on their Mn doping levels. J. Magn. Magn. Mater. 439, 391–396 (2017).  https://doi.org/10.1016/j.jmmm.2017.04.087 CrossRefGoogle Scholar
  13. 13.
    M.T. Qamar, M. Aslam, Z.A. Rehan, M.T. Soomro, J.M. Basahi, I.M.I. Ismail, T. Almeelbi, A. Hameed, The influence of p-type Mn3O4 nanostructures on the photocatalytic activity of ZnO for the removal of bromo and chlorophenol in natural sunlight exposure. Appl. Catal. B 201, 105–118 (2017).  https://doi.org/10.1016/j.apcatb.2016.08.004 CrossRefGoogle Scholar
  14. 14.
    W. Yu, T. Liu, Sh Cao, Ch. Wang, Ch. Chen, Constructing MnO2/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity. J. Solid State Chem. 239, 131–138 (2016).  https://doi.org/10.1016/j.jssc.2016.04.027 CrossRefGoogle Scholar
  15. 15.
    M. Bououdina, K. Omri, M. El-Hilo, A. El Amiri, O.M. Lemine, A. Alyamanif, E.K. Hlil, H. Lassri, L. Elmir, Structural and magnetic properties of Mn-doped ZnO nanocrystals. Physica 56, 107–112 (2014).  https://doi.org/10.1016/j.physe.2013.08.024 CrossRefGoogle Scholar
  16. 16.
    A.A. Othman, M.A. Osman, E.M.M. Ibrahim, M.A. Ali, A.G. Abd-Elrahim, Mn-doped ZnO nanocrystals synthesized by sonochemical method: structural, photoluminescence, and magnetic properties. Mater. Sci. Eng. 219, 1–9 (2017).  https://doi.org/10.1016/j.mseb.2017.02.013 CrossRefGoogle Scholar
  17. 17.
    O.I. Gyrdasova, V.N. Krasil’nikov, E.V. Shalaeva, M.V. Kuznetsov, A.P. Tyutyunnik, Synthesis and structure of quasi-one-dimensional zinc oxide doped with manganese. Russ. J. Inorg. Chem. 57, 72–78 (2012).  https://doi.org/10.1134/S0036023612010111 CrossRefGoogle Scholar
  18. 18.
    O.I. Gyrdasova, V.N. Krasil’nikov, M.A. Melkozerova, E.V. Shalaeva, E.V. Zabolotskaya, L.Y. Buldakova, M.Y. Yanchenko, V.G. Bamburov, Synthesis, microstructure, and native defects of photoactive Zn1–xCuxO solid solutions (0≤x≤0.1) with tubular aggregates. Dokl. Chem. 447, 258–261 (2012).  https://doi.org/10.1134/S0012500812110080 CrossRefGoogle Scholar
  19. 19.
    M.A. Melkozerova, V.N. Krasil’nikov, O.I. Gyrdasova, E.V. Shalaeva, I.V. Baklanova, L.Y. Buldakova, M.Y. Yanchenko, Effect of doping with 3d elements (Co, Ni, Cu) on the Intrinsic defect structure and photocatalytic properties of nanostructured ZnO with tubular morphology of aggregates. Phys. Solid State 55, 2459–2465 (2013).  https://doi.org/10.1134/S106378341312024X CrossRefGoogle Scholar
  20. 20.
    V.N. Krasil’nikov, T.V. Dyachkova, O.I. Gyrdasova, A.P. Tyutyunnik, V.V. Marchenkov, H.W. Weber, Room-temperature ferromagnetism in polycrystalline Zn1–xFexO (0≤x≤0.075) solid solutions synthesized by the precursor method. Mater. Chem. Phys. 162, 1–5 (2015).  https://doi.org/10.1016/j.matchemphys.2015.05.025 CrossRefGoogle Scholar
  21. 21.
    O.I. Gyrdasova, V.N. Krasil’nikov, I.V. Baklanova, L.Yu. Buldakova, I.V. Yanchenko, Synthesis, structure, and,optical and photocatalytic properties of quasi–one-dimensional ZnO doped with Со3O4 and carbon. Bull. Russ. Acad. Sci.: Physics. 80, 1298–1302 (2016).  https://doi.org/10.3103/S1062873816110204 CrossRefGoogle Scholar
  22. 22.
    O.I. Gyrdasova, M.A. Melkozerova, I.V. Baklanova, L.Y. Buldakova, N.S. Sycheva, V.N. Krasil’nikov, M.Y. Yanchenko, Synthesis,structure, optical and photocatalytic properties of copper-activated ZnO. Mendeleev Commun. 27, 410–412 (2017).  https://doi.org/10.1016/j.mencom.2017.07.032 CrossRefGoogle Scholar
  23. 23.
    V.N. Krasil’nikov, T.V. Dyachkova, A.P. Tyutyunnik, O.I. Gyrdasova, M.A. Melkozerova, I.V. Baklanova, YuA Perevozchikova, S.M. Emelyanova, H.W. Weber, V.V. Marchenkov, Magnetic and optical properties as well as EPR studies of polycrystalline ZnO synthesized from different precursors. Mater. Res. Bull. 97, 553–559 (2018).  https://doi.org/10.1016/j.materresbull.2017.09.061 CrossRefGoogle Scholar
  24. 24.
    F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M. Ben, A. Ghrabi, R. Schneider, Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis. J. Mater. Des. 101, 309–316 (2016).  https://doi.org/10.1016/j.matdes.2016.04.015 CrossRefGoogle Scholar
  25. 25.
    Q. Ma, X. Lv, Y. Wang, J. Chen, Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures. Opt. Mater. 60, 86–93 (2016).  https://doi.org/10.1016/j.optmat.2016.07.014 CrossRefGoogle Scholar
  26. 26.
    Z. Barzgari, A. Ghazizadeh, S. Zahra, Preparation of Mn-doped ZnO nanostructured for photocatalytic degradation of Orange G under solar light. Res. Chem. Intermed. 42, 4303–4315 (2016).  https://doi.org/10.1007/s11164-015-2276-y CrossRefGoogle Scholar
  27. 27.
    N.A. Putri, V. Fauzia, S. Iwan, L. Roza, A.A. Umar, S. Budi, Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates. Appl. Surf. Sci. 439, 285–297 (2018).  https://doi.org/10.1016/j.apsusc.2017.12.246 CrossRefGoogle Scholar
  28. 28.
    Y. Lu, Y. Lin, T. Xie, S. Shi, H. Fan, D. Wang, Enhancement of visible-light-driven photoresponse of Mn/ZnO system: photogenerated charge transfer properties and photocatalytic activity. Nanoscale. 4, 6393–6400 (2012).  https://doi.org/10.1039/c2nr31671d CrossRefGoogle Scholar
  29. 29.
    R.R. Prabhakar, N. Mathews, K.B. Jinesh, K.R.G. Karthik, S.S. Pramana, B. Varghese, C.H. Sow, S. Mhaisalkar, Efficient multispectral photodetection using Mn doped ZnO nanowires. J. Mater. Chem. 22, 9678–9683 (2012).  https://doi.org/10.1039/C2JM16698D CrossRefGoogle Scholar
  30. 30.
    G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953).  https://doi.org/10.1016/0001-6160(53)90006-6 CrossRefGoogle Scholar
  31. 31.
    K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Quant. Theory of Solids, vol. 11 (Wiley, New York, 1963), p. 435.  https://doi.org/10.1126/science.143.3607.672 Google Scholar
  32. 32.
    H. Matsuura, T. Miyazawa, Infrared spectra and molecular vibrations of ethylene glycol and deuterated derivatives. Bull. Chem. Soc. Jpn 40, 85–94 (1967).  https://doi.org/10.1246/bcsj.40.85 CrossRefGoogle Scholar
  33. 33.
    K. Nakanishi, Infrared Absorption Spectroscopy: Practical (Holden-Day, San Francisco, 1962), p. 233.  https://doi.org/10.1021/ed055pA316.1 Google Scholar
  34. 34.
    A.M. Bond, Modern Polarographic Methods in Analytical Chemistry (M. Dekker Inc., New York, 1980)CrossRefGoogle Scholar
  35. 35.
    H. Wang, Q. Hu, Y. Meng, Z. Jin, Z. Fang, Q. Fu, W. Gao, L. Xu, Y. Song, F. Lu, Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode. J. Hazard. Mater. 353, 151–157 (2018).  https://doi.org/10.1016/j.jhazmat.2018.02.029 CrossRefGoogle Scholar
  36. 36.
    T.A. Onufrieva, L.Y. Buldakova, M.Y. Yanchenko, N.A. Zaitseva, T.I. Krasnenko, Crystallochemical and voltammetric characterization of the Zn2–2хMn2хSiO4 luminophor. Russ. J. Phys. Chem. A 92, 1413–1416 (2018).  https://doi.org/10.1134/S003602441807021X CrossRefGoogle Scholar
  37. 37.
    B. Donkova, D. Dimitrov, M. Kostadinov, E. Mitkova, D. Mehandjiev, Catalytic and photocatalytic activity of lightly doped catalysts M:ZnO (M = Cu, Mn). Mater. Chem. Phys. 123, 563–568 (2010).  https://doi.org/10.1016/j.matchemphys.2010.05.015 CrossRefGoogle Scholar
  38. 38.
    Y.M. Hunge, A.A. Yadav, Basics and advanced developments in photocatalysis—a review (Mini review). Int. J. Hydrol. 2(4), 539–540 (2018).  https://doi.org/10.15406/ijh.2018.02.00122 CrossRefGoogle Scholar
  39. 39.
    M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605, 2–19 (2016).  https://doi.org/10.1016/j.tsf.2015.12.064 CrossRefGoogle Scholar
  40. 40.
    S.S. Turkyilmaz, N. Guy, M. Ozacar, Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: the synergistic/antagonistic effect between ZnO and metals. J. Photochem. Photobiol. A Chem. 341, 39–50 (2017).  https://doi.org/10.1016/j.jphotochem.2017.03.027 CrossRefGoogle Scholar
  41. 41.
    M.V. Gallegos, M.A. Peluso, H. Thomas, L.C. Damonte, J.E. Sambeth, Structural and optical properties of ZnO and manganese-doped ZnO. J. Alloys Compd. 689, 416–424 (2016).  https://doi.org/10.1016/j.jallcom.2016.07.283 CrossRefGoogle Scholar
  42. 42.
    I.V. Baklanova, V.N. Krasil’nikov, O.I. Gyrdasova, L.Y. Buldakova, M.Y. Yanchenko, Synthesis and optical and photocatalytic properties of manganese-doped titanium oxide with a three-dimensional architecture of particles. Mendeleev Commun. 26, 335–337 (2016).  https://doi.org/10.1016/j.mencom.2016.07.023 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Olga I. Gyrdasova
    • 1
  • Natalya S. Sycheva
    • 1
  • Inna V. Baklanova
    • 1
    Email author
  • Larisa Yu. Buldakova
    • 1
  • Mikhail Yu. Yanchenko
    • 1
  • Ksenya V. Nefedova
    • 1
  • Vladimir N. Krasil’nikov
    • 1
  1. 1.Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of SciencesEkaterinburgRussian Federation

Personalised recommendations