Advertisement

Temperature and excitation dependent ultraviolet lasing in vertically oriented ZnO nanowires

  • T. Maitra
  • A. Pradhan
  • S. Mukherjee
  • S. Mukherjee
  • A. Nayak
  • S. BhuniaEmail author
Article
  • 13 Downloads

Abstract

Vertically oriented ZnO nanowires grown by a catalyst free chemical vapor deposition technique on c-plane of sapphire substrate show band-edge related excitonic lasing features. High resolution X-ray, scanning electron microscopy and photoluminescence analyses are collectively employed to understand the lasing behaviour from the nanowires. The nanowires show high degree of crystallinity, strong c-axis preferred orientation as well as relative in-plane alignment and sixfold hexagonal symmetry of the wurtzite phase. The nanowires are optically pumped using a 325 nm laser source and the emission characteristics are studied in detail by varying temperature and excitation intensity. The nanowires show the onset of lasing characteristics below 150 K which become prominent at 3.4 K with sharp multimodal emission characteristics. The threshold pump power for the onset of lasing is found to be of 14.5 mW at 3.4 K. Even though with increasing optical pumping, the lasing features from the nanowires lost their prominence being suppressed by spontaneous excitonic and defect transitions above 150 K.

Notes

Acknowledgements

The authors thank Department of Science and Technology, India for the financial support for facilitating the experiments at the Indian Beamline, Photon Factory. One of the authors TM would like to acknowledge UGC, Govt. of India for the financial support.

References

  1. 1.
    S. Zhao, Z. Mi, IEEE J. Quantum Electron. 54, 6 (2018)Google Scholar
  2. 2.
    M. Behzadirad, M. Nami, N. Wostbrock, M.R. Zamani Kouhpa, D.F. Feezell, S.R. Brueck, T. Busani, ACS Nano 54, 6 (2018)Google Scholar
  3. 3.
    S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, J. Liu, Nat. Nanotechnol. 6, 8 (2011)CrossRefGoogle Scholar
  4. 4.
    F. Gao, M.M. Morshed, S.B. Bashar, Y. Zheng, Y. Shi, J. Liu, Nanoscale 7, 9505–9509 (2015)CrossRefGoogle Scholar
  5. 5.
    H. Men, N. Tian, J. Yu, Appl. Phys. B 124, 24 (2018)CrossRefGoogle Scholar
  6. 6.
    H. Cao, J.Y. Xu, D.Z. Zhang, S.H. Chang, S.T. Ho, E.W. Seelig, X. Liu, R.P.H. Chang, Phys. Rev. Lett. 84, 5584 (2000)CrossRefGoogle Scholar
  7. 7.
    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, Appl. Phys. Lett. 70, 2230 (1997)CrossRefGoogle Scholar
  8. 8.
    P. Yu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, J. Cryst. Growth 184/185, 601 (1998)CrossRefGoogle Scholar
  9. 9.
    M. Suja, B. Debnath, S.B. Bashar, L. Su, R. Lake, J. Liu, Appl. Surf. Sci. 439, 525 (2018)CrossRefGoogle Scholar
  10. 10.
    Z. Peterson, R.C. Word, R. Könenkamp, J. Appl. Phys. 124, 063104 (2018)CrossRefGoogle Scholar
  11. 11.
    C. Klingshirn, J. Cryst. Growth 117, 753 (1992)CrossRefGoogle Scholar
  12. 12.
    W. Wegscheider, L.N. Pfeiffer, M.M. Dignam, A. Pinczuk, K.W. West, S.L. McCall, R. Hull, Phys. Rev. Lett. 71, 4071 (1993)CrossRefGoogle Scholar
  13. 13.
    J.A. Alanis, M. Lysevych, T. Burgess, D. Saxena, S. Mokkapati, S. Skalsky, X. Tang, P. Mitchell, S. Walton, H.H. Tan, C. Jagadish, P. Parkinson, Nano Lett. 19, 362–368 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K.H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E.A. Fitzgerald, C.S. Tan, D. Nam, Nat. Commun. 8, 1845 (2017)CrossRefGoogle Scholar
  15. 15.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)CrossRefGoogle Scholar
  16. 16.
    S.R. Haldar, A. Nayak, T.K. Chini, S. Bhunia, Curr. Appl. Phys. 10, 3 (2010)CrossRefGoogle Scholar
  17. 17.
    S.R. Haldar, A. Nayak, T.K. Chini, S.K. Ray, N. Yamamoto, S. Bhunia, Phys. Status Solidi A 207, 364 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Zhou, M.F. Wu, S.D. Yao, Y.M. Lu, Y.C. Liu, Mater. Res. Bull. 41, 2198 (2006)CrossRefGoogle Scholar
  19. 19.
    Z.L. Wang, J. Phys. Condens. Matter 16, R829 (2004)CrossRefGoogle Scholar
  20. 20.
    Y.P. Varshni, Physica 34, 149 (1967)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsPresidency UniversityKolkataIndia
  2. 2.Surface Physics and Material Science DivisionSaha Institute of Nuclear Physics, HBNIKolkataIndia

Personalised recommendations