The investigation of various type irradiation effects on aluminum nitride ceramic

  • K. Dukenbayev
  • A. KozlovskiyEmail author
  • Z. A. Alyamova
  • T. Gladkikh
  • I. Kenzhina
  • M. ZdorovetsEmail author


The paper presents the results of a study of the effect of proton and ion radiation on structural changes in nitride ceramics, which have a high potential for using as a structural material for GenIV nuclear reactors. Proton beams with an energy of 1.5 MeV and low-energy helium (He2+) and carbon (C2+) ions with an energy of 40 keV were used, to simulate defect formation and to estimate ceramics radiation resistance. According to the data obtained, it has been established that aluminum nitride ceramics have high radiation resistance to the effects of proton radiation. While under irradiation with C2+ ions, the observed degradation of the surface layer is due to the accumulation of carbon in the structure with the subsequent formation of impurity carbide inclusions. It is established that the accumulation of slightly soluble ions of helium and carbon in the structure of the surface layer leads to an increase in the strain and distortion of crystal lattice due to introducing ions into the interstitial lattice and breaking chemical and crystalline bonds. As a result of studying the optical characteristics of irradiated samples, it was found that the decrease in absorption spectra intensity for samples irradiated with helium and carbon ions is due to a change in the interplanar distances as a result of the migration of defects along the structure with the subsequent formation of impurity inclusions. The formation of impurity phases and a high concentration of defects in the structure of ceramics leads to a sharp decrease in performance.



  1. 1.
    G. Locatelli, M. Mancini, N. Todeschini, Generation IV nuclear reactors: current status and future prospects. Energy Policy 61, 1503–1520 (2013)CrossRefGoogle Scholar
  2. 2.
    W. Hoffelner, Materials for the very high temperature reactor (VHTR): a versatile nuclear power station for combined cycle electricity and heat production. CHIMIA Int. J. Chem. 59(12), 977–982 (2005)CrossRefGoogle Scholar
  3. 3.
    W.R. Corwin, US Generation IV reactor integrated materials technology program. Nucl. Eng. Technol. 38(7), 591–618 (2006)Google Scholar
  4. 4.
    A. Alemberti et al., European lead fast reactor—ELSY. Nucl. Eng. Des. 241(9), 3470–3480 (2011)CrossRefGoogle Scholar
  5. 5.
    V.K. Verma, K. Katovsky, Radiation damage and development of a MC software tool. Spent nuclear fuel and accelerator-driven subcritical systems (Springer, Singapore, 2019), pp. 123–144Google Scholar
  6. 6.
    E.E. Bloom, S.J. Zinkle, F.W. Wiffen, Materials to deliver the promise of fusion power–progress and challenges. J. Nucl. Mater. 329, 12–19 (2004)CrossRefGoogle Scholar
  7. 7.
    P.P. Liu et al., Microstructure change and swelling of helium irradiated beryllium. Fusion Eng. Des. 140, 62–66 (2019)CrossRefGoogle Scholar
  8. 8.
    S. Cho et al., Overview of helium cooled ceramic reflector test blanket module development in Korea. Fusion Eng. Des. 88(6–8), 621–625 (2013)CrossRefGoogle Scholar
  9. 9.
    D.A. Addison et al., Cyclic and time-dependent crack growth mechanisms in Alloy 617 at 800 °C. Mater. Sci. Eng. 737, 205–212 (2018)CrossRefGoogle Scholar
  10. 10.
    B. Raj et al., Challenges in materials research for sustainable nuclear energy. Mrs Bull. 33(4), 327–337 (2008)CrossRefGoogle Scholar
  11. 11.
    I. Jóźwik et al., High resolution SEM characterization of nano-precipitates in ODS steels. Microsc. Res. Tech. 81(5), 502–508 (2018)CrossRefGoogle Scholar
  12. 12.
    C. Martín-del-Campo et al., Contributions to the neutronic analysis of a gas-cooled fast reactor. Ann. Nucl. Energy 38(6), 1406–1411 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Prasitthipayong et al., Micro mechanical testing of candidate structural alloys for Gen-IV nuclear reactors. Nucl. Mater. Energy 16, 34–45 (2018)CrossRefGoogle Scholar
  14. 14.
    K. Ning, L. Kathy, Water vapor thermal treatment effects on spark plasma sintered nanostructured ferritic alloy-silicon carbide systems. J. Am. Ceram. Soc. 101(6), 2208–2215 (2018)CrossRefGoogle Scholar
  15. 15.
    J.G. Marques, Evolution of nuclear fission reactors: third generation and beyond. Energy Convers. Manage. 51(9), 1774–1780 (2010)CrossRefGoogle Scholar
  16. 16.
    H. Zhang et al., The damage evolution of He irradiation on Ti3SiC2 as a function of annealing temperature. J. Eur. Ceram. Soc. 38(4), 1253–1264 (2018)CrossRefGoogle Scholar
  17. 17.
    J. Li et al., Characterization of calcium alginate/deacetylated konjac glucomannan blend films prepared by Ca2 + crosslinking and deacetylation. Food Hydrocolloids 82, 363–369 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Cai et al., A parallel bicomponent TPU/PI membrane with mechanical strength enhanced isotropic interfaces used as polymer electrolyte for lithium-ion battery. Polymers 11(1), 185 (2019)CrossRefGoogle Scholar
  19. 19.
    A. Feng et al., Synthesis, preparation and mechanical property of wood fiber-reinforced poly (vinyl chloride) composites. J. Nanosci. Nanotechnol. 17(6), 3859–3863 (2017)CrossRefGoogle Scholar
  20. 20.
    G. Wu et al., Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Appl. Surf. Sci. 464, 472–478 (2019)CrossRefGoogle Scholar
  21. 21.
    J. Li et al., Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property. Mater. Sci. Eng. 89, 25–32 (2018)CrossRefGoogle Scholar
  22. 22.
    I. Tazhibayeva et al., Tritium accumulation and release from Li2TiO3 during long-term irradiation in the WWR-K reactor. J. Nucl. Mater. 417(1-3), 748–752 (2011)CrossRefGoogle Scholar
  23. 23.
    K. Dukenbayev et al., Study of the effect of irradiation with Fe 7 + ions on the structural properties of thin TiO2 foils. Mater. Res. Express 6(4), 046309 (2019)CrossRefGoogle Scholar
  24. 24.
    Y. Chikhray et al., Study of Li2TiO3 + 5 mol% TiO2 lithium ceramics after long-term neutron irradiation. J. Nucl. Mater. 386, 286–289 (2009)CrossRefGoogle Scholar
  25. 25.
    G. Wu et al., Investigation and optimization of Fe/ZnFe2O4 as a Wide-band electromagnetic absorber. J. Colloid Interface Sci. 536, 548–555 (2019)CrossRefGoogle Scholar
  26. 26.
    M. Dolle et al., Synthesis of nanosized zirconium carbide by a sol–gel route. J. Eur. Ceram. Soc. 27(4), 2061–2067 (2007)CrossRefGoogle Scholar
  27. 27.
    T. Lapauw et al., The double solid solution (Zr, Nb) 2 (Al, Sn) C MAX phase: a steric stability approach. Sci. Rep. 8(1), 12801 (2018)CrossRefGoogle Scholar
  28. 28.
    C. Ekberg et al., Nitride fuel for Gen IV nuclear power systems. J. Radioanal. Nucl. Chem. 318(3), 1713–1725 (2018)CrossRefGoogle Scholar
  29. 29.
    I.V. Iatsyuk et al., Kinetics and high-temperature oxidation mechanism of ceramic materials in the ZrB 2–SiC–MoSi 2 system. Russ. J. Non-Ferrous Metals 59(1), 76–81 (2018)CrossRefGoogle Scholar
  30. 30.
    G. Singh, K. Terrani, Y. Katoh, Thermo-mechanical assessment of full SiC/SiC composite cladding for LWR applications with sensitivity analysis. J. Nucl. Mater. 499, 126–143 (2018)CrossRefGoogle Scholar
  31. 31.
    S.R.G. Christopoulos et al., Intrinsic defect processes and elastic properties of Ti3AC2 (A = Al, Si, Ga, Ge, In, Sn) MAX phases. J. Appl. Phys. 123(2), 025103 (2018)CrossRefGoogle Scholar
  32. 32.
    S. Kraft et al., Ion beam mixing of ZnO/SiO 2 and Sb/Ni/Si interfaces under swift heavy ion irradiation. J. Appl. Phys. 91(3), 1129–1134 (2002)CrossRefGoogle Scholar
  33. 33.
    O.G. Diaz et al., On understanding the microstructure of SiC/SiC ceramic matrix composites (CMCs) after a material removal process. Mater. Sci. Eng. 743, 1–11 (2019)CrossRefGoogle Scholar
  34. 34.
    V. Casalegno et al., CaO-Al2O3 glass-ceramic as a joining material for SiC based components: a microstructural study of the effect of Si-ion irradiation. J. Nucl. Mater. 501, 172–180 (2018)CrossRefGoogle Scholar
  35. 35.
    D.S. King et al., Solidification of welded SiC–ZrB2–ZrC ceramics. J. Am. Ceram. Soc. 101(9), 4331–4339 (2018)CrossRefGoogle Scholar
  36. 36.
    C. Cao et al., Effects of isothermal annealing on the oxidation behavior, mechanical and thermal properties of AlN ceramics. Ceram. Int. 43(12), 9334–9342 (2017)CrossRefGoogle Scholar
  37. 37.
    L.-H. Hu, Y.-K. Wang, S.-C. Wang, Aluminum nitride surface functionalized by polymer derived silicon oxycarbonitride ceramic for anti-hydrolysis. J. Alloy. Compd. 772, 828–833 (2019)CrossRefGoogle Scholar
  38. 38.
    U. Betke et al., Manufacturing of reticulated open-cellular aluminum nitride ceramic foams from aqueous AlN suspensions. Adv. Eng. Mater. 19(3), 1600660 (2017)CrossRefGoogle Scholar
  39. 39.
    S.M. Ognjanović, M. Winterer, Optimizing particle characteristics of nanocrystalline aluminum nitride. Powder Technol. 326, 488–497 (2018)CrossRefGoogle Scholar
  40. 40.
    B. Reinhardt, J. Daw, B.R. Tittmann, Irradiation testing of piezoelectric (aluminum nitride, zinc oxide, and bismuth titanate) and magnetostrictive sensors (remendur and galfenol). IEEE Trans. Nucl. Sci. 65(1), 533–538 (2018)CrossRefGoogle Scholar
  41. 41.
    W. Mengkuo et al., In-pile assemblies for investigation of tritium release from Li2TiO3 lithium ceramic. Fusion Sci. Technol. 47(4), 1084–1088 (2005)CrossRefGoogle Scholar
  42. 42.
    K.L. Murty, I. Charit, Structural materials for Gen-IV nuclear reactors: challenges and opportunities. J. Nucl. Mater. 383(1-2), 189–195 (2008)CrossRefGoogle Scholar
  43. 43.
    G. Remnev et al., Effect of intense electron and ion irradiation on optical absorption of boron carbide thin films. Radiat Effects Defects Solids 173(11-12), 1075–1082 (2018)CrossRefGoogle Scholar
  44. 44.
    I. Tazhibayeva et al., Interaction of tritium and helium with lead–lithium eutectic under reactor irradiation. Fusion Eng. Des. 89(7-8), 1486–1490 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Xi et al., Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation. J. Appl. Phys. 123(4), 045904 (2018)CrossRefGoogle Scholar
  46. 46.
    D. Sun et al., Interaction between helium and intrinsic point defects in 3C-SiC single crystal. J. Appl. Phys. 121(22), 225111 (2017)CrossRefGoogle Scholar
  47. 47.
    B. Su et al., Damage development of sintered SiC ceramics with the depth variation in Ar ion-irradiation at 600 C. J. Eur. Ceram. Soc. 38(5), 2289–2296 (2018)CrossRefGoogle Scholar
  48. 48.
    A.O. Sadvakassova et al., Research of reactor radiation influence upon processes of hydrogen isotopes interaction with materials of the fusion facility. Fusion Sci. Technol. 60(1T), 9–15 (2011)CrossRefGoogle Scholar
  49. 49.
    T. Yang et al., Comparison of irradiation tolerance of two MAX phases-Ti4AlN3 and Ti2AlN. J. Nucl. Mater. 513, 120–128 (2019)CrossRefGoogle Scholar
  50. 50.
    T. Yao et al., Radiation-induced amorphization of Langasite La3Ga5SiO14. J. Nucl. Mater. 500, 50–55 (2018)CrossRefGoogle Scholar
  51. 51.
    A. Kozlovskiy et al., Investigation of the influence of irradiation with Fe + 7 ions on structural properties of AlN ceramics. Mater. Res. Express 5(6), 065502 (2018)CrossRefGoogle Scholar
  52. 52.
    A. Kozlovskiy et al., Effect of swift heavy ions irradiation on AlN ceramics properties. Ceram. Int. 44(16), 19787–19793 (2018)CrossRefGoogle Scholar
  53. 53.
    D.L. Bish, S.A. Howard, Quantitative phase analysis using the Rietveld method. J. Appl. Crystallogr. 21(2), 86–91 (1988)CrossRefGoogle Scholar
  54. 54.
    K. Venkateswarlu, A.C. Bose, N. Rameshbabu, X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Phys. B 405(20), 4256–4261 (2010)CrossRefGoogle Scholar
  55. 55.
    A.K. Zak et al., X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)CrossRefGoogle Scholar
  56. 56.
    Y.S. Umansky et al., Crystallography, X-ray analysis and electron microscopy (Metallurgiya, Moscow, 1982). (in Russian) Google Scholar
  57. 57.
    M. Milosavljević et al., A comparison of Ar ion implantation and swift heavy Xe ion irradiation effects on immiscible AlN/TiN multilayered nanostructures. Mater. Chem. Phys. 133(2-3), 884–892 (2012)CrossRefGoogle Scholar
  58. 58.
    A. Kozlovskiy et al., Dynamics of changes in structural properties of AlN ceramics after Xe + 22 ion irradiation. Vacuum 155, 412–422 (2018)CrossRefGoogle Scholar
  59. 59.
    K. Dukenbayev et al., Investigation of radiation resistance of AlN ceramics. Vacuum 159, 144–151 (2019)CrossRefGoogle Scholar
  60. 60.
    G. Szenes, Ion-induced amorphization in ceramic materials. J. Nucl. Mater. 336(1), 81–89 (2005)CrossRefGoogle Scholar
  61. 61.
    T. Gladkikh et al., Changes in optical and structural properties of AlN after irradiation with C2 + ions of 40 keV. Vacuum 161, 103–110 (2019)CrossRefGoogle Scholar
  62. 62.
    L. Trinkler et al., Thermally and optically stimulated luminescence of AlN-Y2O3 ceramics after ionising irradiation. Radiat. Prot. Dosimetry. 84(1-4), 207–210 (1999)CrossRefGoogle Scholar
  63. 63.
    G. Szenes, Ion-induced amorphization in ceramic materials. J. Nucl. Mater. 336(1), 81–89 (2005)CrossRefGoogle Scholar
  64. 64.
    J.-C. Nappé et al., Microstructural changes induced by low energy heavy ion irradiation in titanium silicon carbide. J. Eur. Ceram. Soc. 31(8), 1503–1511 (2011)CrossRefGoogle Scholar
  65. 65.
    D.J. Tallman et al., Effect of neutron irradiation on select MAX phases. Acta Mater. 85, 132–143 (2015)CrossRefGoogle Scholar
  66. 66.
    E.G. Njoroge et al., Surface and interface modification of Zr/SiC interface by swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 354, 249–254 (2015)CrossRefGoogle Scholar
  67. 67.
    A. Kozlovskiy, Influence of irradiation temperature on properties change of AlN ceramics. Vacuum 158, 93–100 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of EngineeringNazarbayev UniversityAstanaKazakhstan
  2. 2.Kazakh-Russian International UniversityAktobeKazakhstan
  3. 3.The Institute of Nuclear Physics of Republic of KazakhstanAstanaKazakhstan
  4. 4.L.N. Gumilyov, Eurasian National UniversityAstanaKazakhstan
  5. 5.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations