Enhanced micro-supercapacitors in aqueous electrolyte based on Si nanowires coated with TiO2

  • Cheng Zhang
  • Shuang Tian
  • Liyi Li
  • Jian ZhouEmail author
  • Feng Xue
  • Ching-Ping WongEmail author


Silicon nanowire (SiNW) is a promising material for micro-supercapacitors (μ-SCs). However, the practical application of SiNW μ-SCs is hindered due to the instability of Si in aqueous solutions. Here, we demonstrate that the overall capacitive properties of SiNW μ-SCs can be improved by a facile TiO2 coating treatment. In this study, SiNWs were fabricated by metal-assisted chemical etching and TiO2 was spin-coated on SiNWs. With the optimal processing condition, the TiO2-coated SiNWs (T-SiNWs) exhibit an areal capacitance of 2.69 mF cm−2 at the scan rate of 50 mV s−1 and 3.55 mF cm−2 at the current density of 0.1 mA cm−2, respectively. Further, an enhanced rate capability of T-SiNWs is observed owing to the TiO2 coating. Moreover, a retention of 68.8% is obtained by T-SiNWs after 1000 galvanostatic charge–discharge cycles, which is higher than that of the bare SiNWs. The reasons for the capacitive property enhancement of the electrode materials were also investigated.



The authors thank Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (ASMA201602), Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology No. 56XCA17006-1 for financial support.


  1. 1.
    J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Science 328, 480 (2010)CrossRefGoogle Scholar
  2. 2.
    J.P. Alper, M. Vincent, C. Carraro, R. Maboudian, Appl. Phys. Lett. 100, 163901 (2012)CrossRefGoogle Scholar
  3. 3.
    A. Soam, N. Arya, A. Singh, R. Dusane, Chem. Phys. Lett. 678, 46 (2017)CrossRefGoogle Scholar
  4. 4.
    J.P. Alper, M.S. Kim, M. Vincent, B. Hsia, V. Radmilovic, C. Carraro, R. Maboudian, J. Power Sources 230, 298 (2013)CrossRefGoogle Scholar
  5. 5.
    L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, W. Mai, Chem. Commun. 52, 6296 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Li, B. Song, L. Maurer, Z. Lin, G. Lian, C.-C. Tuan, K.-S. Moon, C.-P. Wong, Nano Energy 21, 276 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9, 1872 (2009)CrossRefGoogle Scholar
  8. 8.
    A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157, 11 (2006)CrossRefGoogle Scholar
  9. 9.
    J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Nano Energy 25, 193 (2016)CrossRefGoogle Scholar
  10. 10.
    G. Lian, C.-C. Tuan, L. Li, S. Jiao, K.-S. Moon, Q. Wang, D. Cui, C.-P. Wong, Nano Lett. 17, 1365 (2017)CrossRefGoogle Scholar
  11. 11.
    P. Huang, D. Pech, R. Lin, J.K. McDonough, M. Brunet, P.-L. Taberna, Y. Gogotsi, P. Simon, Electrochem. Commun. 36, 53 (2013)CrossRefGoogle Scholar
  12. 12.
    D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Nat. Nanotechnol. 5, 651 (2010)CrossRefGoogle Scholar
  13. 13.
    P. Lu, P. Ohlckers, L. Müller, S. Leopold, M. Hoffmann, K. Grigoras, J. Ahopelto, M. Prunnila, X. Chen, Electrochem. Commun. 70, 51 (2016)CrossRefGoogle Scholar
  14. 14.
    N. Berton, M. Brachet, F. Thissandier, J. Le Bideau, P. Gentile, G. Bidan, T. Brousse, S. Sadki, Electrochem. Commun. 41, 31 (2014)CrossRefGoogle Scholar
  15. 15.
    F. Thissandier, L. Dupré, P. Gentile, T. Brousse, G. Bidan, D. Buttard, S. Sadki, Electrochim. Acta 117, 159 (2014)CrossRefGoogle Scholar
  16. 16.
    D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Müller-Sebert, P. Gentile, S. Pouget, C.E. Nebel, G. Bidan, Electrochim. Acta 242, 173 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Soam, N. Arya, A. Kumbhar, R. Dusane, Appl. Nanosci. 6, 1159 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Soam, P. Kavle, A. Kumbhar, R.O. Dusane, Curr. Appl. Phys. 17, 314 (2017)CrossRefGoogle Scholar
  19. 19.
    D. Aradilla, P. Gentile, G. Bidan, V. Ruiz, P. Gómez-Romero, T.J.S. Schubert, H. Sahin, E. Frackowiak, S. Sadki, Nano Energy 9, 273 (2014)CrossRefGoogle Scholar
  20. 20.
    K. Grigoras, J. Keskinen, L. Grönberg, J. Ahopelto, M. Prunnila, J. Phys: Conf. Ser. 557, 012058 (2014)Google Scholar
  21. 21.
    F. Lu, M. Qiu, X. Qi, L. Yang, J. Yin, G. Hao, X. Feng, J. Li, J. Zhong, Appl. Phys. A 104, 545 (2011)CrossRefGoogle Scholar
  22. 22.
    L. Oakes, A. Westover, J.W. Mares, S. Chatterjee, W.R. Erwin, R. Bardhan, S.M. Weiss, C.L. Pint, Sci. Rep. 3, 3020 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Chatterjee, R. Carter, L. Oakes, W.R. Erwin, R. Bardhan, C.L. Pint, J. Phys. Chem. C 118, 10893 (2014)CrossRefGoogle Scholar
  24. 24.
    R.R. Devarapalli, S. Szunerits, Y. Coffinier, M.V. Shelke, R. Boukherroub, A.C.S. Appl, Mater. Interfaces 8, 4298 (2016)CrossRefGoogle Scholar
  25. 25.
    J.P. Alper, S. Wang, F. Rossi, G. Salviati, N. Yiu, C. Carraro, R. Maboudian, Nano Lett. 14, 1843 (2014)CrossRefGoogle Scholar
  26. 26.
    X. Li, P.W. Bohn, Appl. Phys. Lett. 77, 2572 (2000)CrossRefGoogle Scholar
  27. 27.
    Y. Chen, L. Li, C. Zhang, C.-C. Tuan, X. Chen, J. Gao, C.-P. Wong, Nano Lett. 17, 1014 (2017)CrossRefGoogle Scholar
  28. 28.
    Y. Chen, C. Zhang, L. Li, C.-C. Tuan, F. Wu, X. Chen, J. Gao, Y. Ding, C.-P. Wong, Nano Lett. 17, 4304 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Li, X. Zhao, C.-P. Wong, A.C.S. Appl, Mater. Interfaces 6, 16782 (2014)CrossRefGoogle Scholar
  30. 30.
    L. Li, Y. Liu, X. Zhao, Z. Lin, C.-P. Wong, A.C.S. Appl, Mater. Interfaces 6, 575 (2014)CrossRefGoogle Scholar
  31. 31.
    O.J. Hildreth, A.G. Fedorov, C.P. Wong, ACS Nano 6, 10004 (2012)CrossRefGoogle Scholar
  32. 32.
    G. Zhang, C. Huang, L. Zhou, L. Ye, W. Li, H. Huang, Nanoscale 3, 4174 (2011)CrossRefGoogle Scholar
  33. 33.
    X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett. 12, 1690 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Zhang, L. Li, C.-C. Tuan, J. Zhou, F. Xue, C.-P. Wong, J. Mater. Sci.: Mater. Electron. 29, 15130 (2018)Google Scholar
  35. 35.
    F. Konstantinou, A. Shougee, T. Albrecht, K. Fobelets, J. Phys. Appl. Phys. 50, 415503 (2017)CrossRefGoogle Scholar
  36. 36.
    Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, U. Gösele, J. Phys. Chem. C 114, 10683 (2010)CrossRefGoogle Scholar
  37. 37.
    M. Salari, K. Konstantinov, H.K. Liu, J. Mater. Chem. 21, 5128 (2011)CrossRefGoogle Scholar
  38. 38.
    M.-S. Wu, Z.-S. Guo, J.-J. Jow, J. Phys. Chem. C 114, 21861 (2010)CrossRefGoogle Scholar
  39. 39.
    H. Zhou, Y. Zhang, J. Phys. Chem. C 118, 5626 (2014)CrossRefGoogle Scholar
  40. 40.
    F. Thissandier, N. Pauc, T. Brousse, P. Gentile, S. Sadki, Nanoscale Res. Lett. 8, 38 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Advanced Metallic MaterialsSoutheast UniversityNanjingChina
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Industry and Information Technology Key Laboratory of Materials Processing and Protection Technology for Harsh Environment (Nanjing University of Aeronautics and Astronautics)Ministry of Industry and Information TechnologyNanjingChina

Personalised recommendations