Combustion synthesis, Judd–Ofelt parameters and optical properties of color tunable Ba3Y4O9: Eu3+ nanophosphor for near-UV based WLEDs

  • Anju Hooda
  • S. P. Khatkar
  • Avni Khatkar
  • Rajesh Kumar Malik
  • Sushma Devi
  • Jyoti Dalal
  • V. B. TaxakEmail author


Solution combustion synthesis, a simple and efficient route was adopted to synthesize color tunable Ba3Y4O9: Eu3+ nanophosphor with varying composition of trivalent europium ions. Structural analysis using powder X-ray diffraction technique reveals trigonal crystal system belonging to hexagonal crystal family with R3 (143) space group and nanocrystalline nature of the synthesized phosphor. The average size of the synthesized phosphor in nano-scale range was confirmed by using Scherrer’s equation and transmission electron microscope (TEM) analysis. A structure refinement technique i.e. Rietveld refinement was employed over powder X-ray diffraction data that fits the entire powder pattern together with peak shapes and background. Photoluminescent features were analyzed via recording excitation (200–500 nm), emission profile (415–750 nm) and luminescence decay curves for optoelectronic applications. The emission spectrum shows characteristic intense peak at 615 nm by means of 5D0 → 7F2 electric dipole transition. Judd–Ofelt parameters for all concentration of Eu3+ doped system were determined by employing Judd–Ofelt theory. The optimum doping concentration of Eu3+ ions in Ba3Y4(1−x)O9: 4x Eu3+ was found to be x = 0.10. Moreover, the critical distance was computed to be 10.91 Å suggesting dd interactions as a major reason for concentration quenching phenomenon. The energy band gap values for pure host lattice and optimized system were calculated as 5.41 eV and 5.91 eV respectively via Kubelka–Munk theory. CIE (Commission Internationale De I’eclairage) color coordinates lie in blue–white–red region depending upon the composition of dopant ion. The potential use of synthesized nanophosphor as a warm light source was evident from the correlated color temperature (CCT) result.


Combustion synthesis PXRD CIE Radiative features Rietveld refinement Crystal structure 



One of the authors, Anju Hooda would like to thank the Council of Scientific and Industrial Research (CSIR), New Delhi, India for its financial support in the form of junior research fellowship (JRF) (Award No: 09/382(0195)/2017-EMR-I).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.


  1. 1.
    S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Mater. Sci. Eng. R. Rep. 71, 1 (2010)CrossRefGoogle Scholar
  2. 2.
    T. Erdem, Y. Kelestemur, Z. Soran-Erdem, Y. Ji, H.V. Demir, Nanophotonics 3, 373 (2014)CrossRefGoogle Scholar
  3. 3.
    G. Chen, C. Yang, P.N. Prasad, Acc. Chem. Res. 46, 1474 (2013)CrossRefGoogle Scholar
  4. 4.
    C.R. García, L.A. Diaz-Torres, J. Oliva, G.A. Hirata, Opt. Mater. (Amst). 37, 520 (2014)CrossRefGoogle Scholar
  5. 5.
    B. Mari, K.C. Singh, M. Sahal, S.P. Khatkar, V.B. Taxak, M. Kumar, J. Lumin. 130, 2128 (2010)CrossRefGoogle Scholar
  6. 6.
    F.B. Xiong, D.S. Guo, H.F. Lin, L.J. Wang, H.X. Shen, W.Z. Zhu, J. Alloys Compd. 647, 1121 (2015)CrossRefGoogle Scholar
  7. 7.
    C. Shi, Y. Fu, B. Liu, G. Zhang, Y. Chen, Z. Qi, X. Luo, J. Lumin. 122–123, 11 (2007)CrossRefGoogle Scholar
  8. 8.
    M. Saif, N. Alsayed, A. Mbarek, M. El-Kemary, M.S.A. Abdel-Mottaleb, J. Mol. Struct. 1125, 763 (2016)CrossRefGoogle Scholar
  9. 9.
    L. Chen, C.C. Lin, C.W. Yeh, R.S. Liu, Materials (Basel). 3, 2172 (2010)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, G. Zhu, S. Xin, Q. Wang, Y. Li, Q. Wu, C. Wang, X. Wang, X. Ding, W. Geng, J. Rare Earths 33, 1 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Shang, C. Li, J. Lin, Chem. Soc. Rev. 43, 1372 (2014)CrossRefGoogle Scholar
  12. 12.
    W. Kwestroo, H.C.A. van Gerven, C. Langereis, Mater. Res. Bull. 9, 1631 (1974)CrossRefGoogle Scholar
  13. 13.
    B.W. Wong-ng, H.F. Mcmurdie, B. Paretzkin, Y. Zhang, C.R. Hubbard, A.L. Dragoo, J.M. Stewart, C. Division, N. Bureau, U.S.A. Maryland, T. Boride, Powder Diffr. 3, 47 (1988)CrossRefGoogle Scholar
  14. 14.
    H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G.-H. Pan, H. Wu, Y. Luo, L. Zhang, J. Zhang, J. Mater. Chem. C 6, 3459 (2018)CrossRefGoogle Scholar
  15. 15.
    J. Liang, L. Sun, G. Annadurai, B. Devakumar, S. Wang, Q. Sun, J. Qiao, H. Guo, B. Li, X. Huang, RSC Adv. 8, 32111 (2018)CrossRefGoogle Scholar
  16. 16.
    J. Li, R. Pang, Z. Yu, L. Liu, H. Wu, H. Li, L. Jiang, S. Zhang, J. Feng, C. Li, J. Rare Earths 36, 680 (2018)CrossRefGoogle Scholar
  17. 17.
    K. Li, H. Lian, M. Shang, J. Lin, Dalton Trans. 44, 20542 (2015)CrossRefGoogle Scholar
  18. 18.
    H. Chander, Proc. ASID 11 (2006)Google Scholar
  19. 19.
    S. Ekambaram, K.C. Patil, M. Maaza, J. Alloys Compd. 393, 81 (2005)CrossRefGoogle Scholar
  20. 20.
    L.D. Jadhav, M.G. Chourashiya, K.M. Subhedar, A.K. Tyagi, J.Y. Patil, J. Alloys Compd. 470, 383 (2009)CrossRefGoogle Scholar
  21. 21.
    G. Xia, S. Zhou, J. Zhang, S. Wang, J. Xu, J. Alloys Compd. 421, 294 (2006)CrossRefGoogle Scholar
  22. 22.
    L.B. Mccusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, J. Appl. Crystallogr. 32, 36 (1999)CrossRefGoogle Scholar
  23. 23.
    S.C. Vogel, J. Appl. Crystallogr. 44, 873 (2011)CrossRefGoogle Scholar
  24. 24.
    S.B. Waje, M. Hashim, W.D.W. Yusoff, Z. Abbas, Appl. Surf. Sci. 256, 3122 (2010)CrossRefGoogle Scholar
  25. 25.
    M. Jaboyedoff, B. Kübler, P. Thélin, Clay Miner. 34, 601 (1999)CrossRefGoogle Scholar
  26. 26.
    Y.W. Seo, M. Noh, B.K. Moon, J.H. Jeong, H.K. Yang, J.H. Kim, J. Nanosci. Nanotechnol. 15, 8028 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Dalal, V.B. Taxak, S. Lohra, D. Sangwan, S.P. Khatkar, J. Lumin. 161, 63 (2015)CrossRefGoogle Scholar
  28. 28.
    J.Y. Park, H.K. Yang, Dye Pigment 141, 348 (2017)CrossRefGoogle Scholar
  29. 29.
    G.S.R. Raju, J.Y. Park, G.P. Nagaraju, E. Pavitra, H.K. Yang, B.K. Moon, J.S. Yu, Y.S. Huh, J.H. Jeong, J. Mater. Chem. C 5, 4246 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Liu, Y. Ding, Z. Peng, Q. Yu, X. Tian, G. Dong, Ceram. Int. 40, 5061 (2014)CrossRefGoogle Scholar
  31. 31.
    D.L. Dexter, J. Chem. Phys. 21, 836 (1953)CrossRefGoogle Scholar
  32. 32.
    S. Chahar, M. Dalal, R. Devi, A. Khatkar, P. Boora, V.B. Taxak, S.P. Khatkar, J. Lumin. 199, 442 (2018)CrossRefGoogle Scholar
  33. 33.
    S. Singh, S.P. Khatkar, P. Boora, V.B. Taxak, J. Mater. Sci. 49, 4773 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Dalal, V.B. Taxak, J. Dalal, A. Khatkar, S. Chahar, R. Devi, S.P. Khatkar, J. Alloys Compd. 698, 662 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Devi, A. Khatkar, V.B. Taxak, M. Dalal, S. Chahar, J. Dalal, S.P. Khatkar, J. Alloys Compd. 767, 409 (2018)CrossRefGoogle Scholar
  36. 36.
    A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, A.H. Naqvi, J. Alloys Compd. 509, 2909 (2011)CrossRefGoogle Scholar
  37. 37.
    G. Ramakrishna, H. Nagabhushana, K. Hareesh, D.V. Sunitha, Solid State Sci. 69, 56 (2017)CrossRefGoogle Scholar
  38. 38.
    G.P. Darshan, H.B. Premkumar, H. Nagabhushana, S.C. Sharma, B.D. Prasad, S.C. Prashantha, Dye Pigment 134, 227 (2016)CrossRefGoogle Scholar
  39. 39.
    M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, Phys. Chem. Chem. Phys. 4, 1542 (2002)CrossRefGoogle Scholar
  40. 40.
    L. Smentek, Mol. Phys. 101, 893 (2003)CrossRefGoogle Scholar
  41. 41.
    M. Dalal, V.B. Taxak, J. Dalal, A. Khatkar, S. Chahar, R. Devi, S.P. Khatkar, J. Alloys Compd. 698, 662 (2017)CrossRefGoogle Scholar
  42. 42.
    I.T. Kim, A.S. Choi, J.W. Jeong, Build. Environ. 57, 302 (2012)CrossRefGoogle Scholar
  43. 43.
    D.B. Judd, D.L. MacAdam, G. Wyszecki, H.W. Budde, H.R. Condit, S.T. Henderson, J.L. Simonds, J. Opt. Soc. Am. 54, 1031 (1964)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anju Hooda
    • 1
  • S. P. Khatkar
    • 1
  • Avni Khatkar
    • 2
  • Rajesh Kumar Malik
    • 1
  • Sushma Devi
    • 1
  • Jyoti Dalal
    • 1
  • V. B. Taxak
    • 1
    Email author
  1. 1.Department of ChemistryMaharshi Dayanand UniversityRohtakIndia
  2. 2.University Institute of Engineering and Technology (UIET), Maharshi Dayanand UniversityRohtakIndia

Personalised recommendations