Advertisement

Camphor sulphonic acid doped novel polycarbazole-g-C3N4 as an efficient electrode material for supercapacitor

  • Panchatcharam Praveena
  • Mathew Sheril Ann
  • Saminathan Dhanavel
  • Dharmalingam Kalpana
  • Thandavarayan Maiyalagan
  • Vengidusamy Narayanan
  • Arumainathan StephenEmail author
Article
  • 31 Downloads

Abstract

The synergistic effect of electric double layer capacitor (EDLC) and pseudo capacitive behaviour of camphor sulphonic acid (CSA) doped PCz-g-C3N4 electrode material for supercapacitor application is studied. The electrochemical behaviour of the prepared electrode material was analysed via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge–discharge studies. The electrode material responded with the specific capacitance calculated to be 199 F g−1 at 1 A g−1 for negative potential window which proves that the material is highly efficient. The PCz-g-C3N4 nanocomposite was synthesized by chemical oxidative polymerization of carbazole using ammonium persulfate as oxidizing agent in ethanol and water media. The structure and elemental analysis were investigated by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FT-IR), high resolution scanning electron microscopy (HR-SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy(XPS) techniques are also used to analyse the samples. The active PCz-g-C3N4 electrode material has porous structure and is a prominent material for supercapacitor application.

Notes

Acknowledgements

One of the Author P. P, sincerely thank Mr. K. C. Dharanibalaji, IIT Madras for technical support. One of the authors S.A.M. (IF170624) thanks DST INSPIRE for financial assistance.

References

  1. 1.
    J. Zhang, X.S. Zhao, Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J. Phys. Chem. C 116, 5420–5426 (2012)CrossRefGoogle Scholar
  2. 2.
    G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11, 4438–4442 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Thakur, B.J. Lokhande, Source molarity affected surface morphological and electrochemical transitions in binder-free FeO(OH) flexible electrodes and fabrication of symmetric supercapacitive device. Chem. Pap. 72, 1407–1415 (2018)CrossRefGoogle Scholar
  4. 4.
    A. Thakur, B.J. Lokhande, Electrolytic anion affected charge storage mechanisms of Fe3O4 flexible thin film electrode in KCl and KOH: a comparative study by cyclic voltammetry and galvanostatic charge–discharge. J. Mater. Sci. 28, 11755–11761 (2017)Google Scholar
  5. 5.
    B.J. Lokhande, R.C. Ambare, S.R. Bharadwaj, Thermal optimization and supercapacitive application of electrodeposited Fe2O3 thin films. Measurement 47, 427–432 (2014)CrossRefGoogle Scholar
  6. 6.
    A.V. Thakur, B.J. Lokhande, Synthesis and electrolytic cation-dependent cyclic voltammetric study of SILAR deposited PPy-Cr2O3 in equimolar aqueous solutions of H2 SO4, Na2 SO4, and K2 SO4. Mater. Renew. Sustain. Ener. 7, 17 (2018)CrossRefGoogle Scholar
  7. 7.
    A. Thakur, B.J. Lokhande, C10H8N2-PPy hybrid flexible electrodes: SILAR synthesis and electrochemical study. J. Mater. Sci. 29, 1630–1635 (2017)Google Scholar
  8. 8.
    A. Thakur, S.D. Sonawane, P.C. Chavan, D.C. Muttin, B.J. Lokhande, SILAR synthesis and cyclic voltammetric study of PPy-Cu(OH)2 composite flexible electrodes for supercapacitors. J. Solid State Electrochem. 21, 2577–2584 (2018)CrossRefGoogle Scholar
  9. 9.
    A. Thakur, B.J. Lokhande, Effect of dip time on the electrochemical behavior of PPy-Cu(OH)2 hybrid electrodes synthesized using pyrrole and CuSO4. e-Polymers 17, 167–173 (2016)Google Scholar
  10. 10.
    K.D. Fong, T. Wang, H.-K. Kim, R.V. Kumar, S.K. Smoukov, Semi-interpenetrating polymer networks for enhanced supercapacitor electrodes. ACS Energy Lett. 2, 2014–2020 (2017)CrossRefGoogle Scholar
  11. 11.
    G.M. Suppes, B.A. Deore, M.S. Freund, Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications. Langmuir 24, 1064–1069 (2008)CrossRefGoogle Scholar
  12. 12.
    H. Wang, Z. Cheng, Y. Liao, J. Li, J. Weber, A. Thomas, C.F.J. Faul, Conjugated microporous polycarbazole networks as precursors for nitrogen-enriched microporous carbons for CO2 storage and electrochemical capacitors. Chem. Mater. 29, 4885–4893 (2017)CrossRefGoogle Scholar
  13. 13.
    Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B.W. Laursen, C.-G. Yan, B.-H. Han, Microporous polycarbazole with high specific surface area for gas storage and separation. J. Am. Chem. Soc. 134, 6084–6087 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Thakur, B.J. Lokhande, Morphological modification for optimum electrochemical performance of highly pristine polypyrrole flexible electrodes, via SILAR immersion time and fabrication of solid state symmetric device. Port. Electrochim. Acta 36, 377–392 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Thakur, B.J. Lokhande, Effect of precursor bath temperature on the morphology and electrochemical performance of SILAR-synthesized PPy:FeOOH hybrid flexible electrodes (Chem, Pap, 2018)Google Scholar
  16. 16.
    S. Hussain, T. Liu, M.S. Javed, N. Aslam, N. Shaheen, S. Zhao, W. Zeng, J. Wang, Amaryllis-like NiCo2S4 nanoflowers for high-performance flexible carbon-fiber-based solid-state supercapacitor. Ceram. Int. 42, 11851–11857 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Shakir, S. Khan, S.I. Al-Resayes et al., Electrical conductivity, isothermal stability, and ammonia-sensing performance of newly synthesized and characterized organic–inorganic polycarbazole–titanium dioxide nanocomposite. Eng. Chem. Res. 53, 8035–8044 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Saravanan, C. Joseph Mathai, M.R. Anantharaman, S. Venkatachalam, P.V. Prabhakaran, Investigations on the electrical and structural properties of polyaniline doped with camphor sulphonic acid. J. Phys. Chem. Sol. 67, 1496–1501 (2006)CrossRefGoogle Scholar
  19. 19.
    Y. Oh, J.O. Hwang, E.-S. Lee, M. Yoon, V.-D. Le, Y.-H. Kim, D.H. Kim, S.O. Kim, Divalent Fe atom coordination in two-dimensional microporous graphitic carbon nitride. ACS Appl. Mater. Interfaces 8, 25438–25443 (2016)CrossRefGoogle Scholar
  20. 20.
    Z. Meng, Y. Xie, T. Cai, S. Zixu, K. Jiang, W. Han, Graphene-like g-C3N4 nanosheets/sulfur as cathode for lithium–sulfur battery. Electrochem. Acta 210, 829–836 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Oh, V.-D. Le, U.N. Maiti, J.O. Hwang, W.J. Park, J. Lim, K.E. Lee, Y.-S. Bae, Y.-H. Kim, S.O. Kim, Selective and regenerative carbon dioxide capture by highly polarizing porous carbon nitride. ACS Nano 9, 9148–9157 (2015)CrossRefGoogle Scholar
  22. 22.
    B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, W. Shi, Hydrothermal synthesis g-C3N4/nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation. ACS Appl. Mater. Interfaces 7, 18247–18256 (2015)CrossRefGoogle Scholar
  23. 23.
    V. Raj, D. Madheswari, M. Ali, Chemical formation, characterization and properties of polycarbazole. J. Appl. Polym. Sci. 116, 147–154 (2010)CrossRefGoogle Scholar
  24. 24.
    B. Gupta, R. Prakash, Interfacial polymerization of carbazole: Morphology controlled synthesis. Synth. Met. 160, 523–528 (2010)CrossRefGoogle Scholar
  25. 25.
    B. Gupta, A.K. Singh, R. Prakash, Electrolyte effects on various properties of polycarbazole. Thin Solid Films 519, 1016–1019 (2010)CrossRefGoogle Scholar
  26. 26.
    H. Taoudi, J.C. Bernede, A. Bonnet, M. Morsli, A. Godoy, Comparison of polycarbazole obtained by oxidation of carbazole either in solution or in thin film form. Thin Solid Films 304, 48–55 (1997)CrossRefGoogle Scholar
  27. 27.
    X. Bai, L. Wang, R. Zong, Y. Zhu, Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C 117, 9952–9961 (2013)CrossRefGoogle Scholar
  28. 28.
    S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25, 10397–10401 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Lei, B. Chen, W. Lv, L. Zhou, L. Wang, Y. Liu, J. Zhang, An inverse opal TiO2/g-C3N4 composite with a heterojunction for enhanced visible light-driven photocatalytic activity. Dalton Trans. 48, 3486–3495 (2019)CrossRefGoogle Scholar
  30. 30.
    U. Baig, W.A. Wani, L. Ting Hun, Facile synthesis of an electrically conductive polycarbazole–zirconium(IV)phosphate cation exchange nanocomposite and its room temperature ammonia sensing performance. New J. Chem. 39, 6882–6891 (2015)CrossRefGoogle Scholar
  31. 31.
    R. Iyyamperumal, L. Zhang, G. Henkelman, R.M. Crooks, Efficient electrocatalytic oxidation of formic acid using Au@Pt dendrimer-encapsulated nanoparticles. J. Am. Chem. Soc. 135, 5521–5524 (2013)CrossRefGoogle Scholar
  32. 32.
    A. Sarac, Nanocharacterization of electrocoated polymers on carbon fibers. Microelectron. Eng. 83, 1534–1537 (2006)CrossRefGoogle Scholar
  33. 33.
    P. Thorngkham, N. Paradee, S. Niamlang, A. Sirivat, Permeation study of indomethacin from polycarbazole/natural rubber blend film for electric field controlled transdermal delivery. J. Pharm. Sci. 104, 1795–1803 (2015)CrossRefGoogle Scholar
  34. 34.
    Y. Zhao, R. Wei, X. Feng, L. Sun, P. Liu, Y. Su, L. Shi, Dual-mode luminescent nanopaper based on ultrathin g-C3N4 nanosheets grafted with rare-earth upconversion nanoparticles. ACS Appl. Mater. Interfaces 8, 21555–21562 (2016)CrossRefGoogle Scholar
  35. 35.
    C. Zhao, G. Tan, J. Huang, W. Yang, H. Ren, A. Xia, Preparation of self-assembled spherical g-C3N4/tz-Bi0.92Gd0.08VO4 heterojunctions and their mineralization properties. ACS Appl. Mater. Interfaces 7, 23949–23957 (2015)CrossRefGoogle Scholar
  36. 36.
    Y. He, J. Cai, L. Zhang, X. Wang, H. Lin, B. Teng, L. Zhao, W. Weng, H. Wan, M. Fan, Comparing two new composite Photocatalysts, t-LaVO4/g-C3N4 and m-LaVO4/g-C3N4, for their structures and performances. Ind. Eng. Chem. Res. 53, 5905–5915 (2014)CrossRefGoogle Scholar
  37. 37.
    N.A. Rice, A. Adronov, Selective interactions of a high-molecular-weight polycarbazole with different commercial nanotube samples. J. Polym. Sci. A 52, 2738–2747 (2014)CrossRefGoogle Scholar
  38. 38.
    A. Tarajko, A. Michota-Kaminska, M.J. Chmielewski, J. Bukowska, M. Skompska, Electrochemical and spectroscopic characterization of poly(1,8-diaminocarbazole): part II. Electrochemical, in situ vis/NIR and Raman studies of redox reaction of PDACz in protic and aprotic media. Electrochim. Acta 54, 4751–4759 (2009)CrossRefGoogle Scholar
  39. 39.
    N.T. Hang, S. Zhang, W. Yang, Efficient exfoliation of g-C3N4 and NO2 sensing behavior of graphene/g-C3N4 nanocomposite Sens. Actuators B Chem. 248, 940–948 (2017)CrossRefGoogle Scholar
  40. 40.
    M.Y. Chen, D. Li, X. Lin, V.P. Dravid, Y.W. Chung, M.S. Wong, W.D. Sproul, Analytical electron microscopy and Raman spectroscopy studies of carbon nitride thin films. J. Vac. Sci. Technol. A 11, 521–524 (1993)CrossRefGoogle Scholar
  41. 41.
    D. Das, S.L. Shinde, K.K. Nanda, Temperature-dependent photoluminescence of g-C3N4: implication for temperature sensing. ACS Appl. Mater. Interfaces 8, 2181–2186 (2016)CrossRefGoogle Scholar
  42. 42.
    N. Tian, H. Huang, Y. Zhang, Mixed-calcination synthesis of CdWO4/g-C3N4 heterojunction with enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 358, 343–349 (2015)CrossRefGoogle Scholar
  43. 43.
    Y. Wang, J. Sun, J. Li, X. Zhao, Electrospinning preparation of nanostructured g-C3N4/BiVO4 composite films with an enhanced photoelectrochemical performance. Langmuir 33, 4694–4701 (2017)CrossRefGoogle Scholar
  44. 44.
    J. Xue, S. Ma, Y. Zhou, Z. Zhang, M. He, Facile Photochemical synthesis ACS of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl. Mater. Interfaces 7, 9630–9637 (2015)CrossRefGoogle Scholar
  45. 45.
    A. Fujimoto, Y. Yamada, M. Koinuma, S. Sato, Origins of sp3C peaks in C1 s X-ray photoelectron spectra of carbon materials. Anal. Chem. 88, 6110–6114 (2016)CrossRefGoogle Scholar
  46. 46.
    M. Xu, L. Han, S. Dong, Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 5, 12533–12540 (2013)CrossRefGoogle Scholar
  47. 47.
    L. Sun, T. Du, C. Hu, J. Chen, J. Lu, Z. Lu, H. Han, Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustain. Chem. Eng. 5, 8693–8701 (2017)CrossRefGoogle Scholar
  48. 48.
    L. Ma, H. Fan, K. Fu, S. Lei, Q. Hu, H. Huang, G. He, Protonation of graphitic carbon nitride (g-C3N4) for electrostatically self-assembling Carbon@ g-C3N4 core-shell nanostructure toward high hydrogen evolution. ACS Sustain. Chem. Eng. 5, 7093–7103 (2017)CrossRefGoogle Scholar
  49. 49.
    Z. Mao, J. Chen, Y. Yang, D. Wang, L. Bie, B.D. Fahlman, Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution. ACS Appl. Mater. Interfaces. 9, 12427–12435 (2017)CrossRefGoogle Scholar
  50. 50.
    K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B 176–177, 44–52 (2015)CrossRefGoogle Scholar
  51. 51.
    N. Joshi, V. Saxena, A. Singh, S.P. Koiry, A.K. Debnath, M.M. Chehimi, D.K. Aswal, S.K. Gupta, Flexible H2S sensor based on gold modified polycarbazole films. Sens. Actuators B Chem. 200, 227–234 (2014)CrossRefGoogle Scholar
  52. 52.
    A.S. Sarac, S.A.M. Tofail, M. Serantoni, J. Henry, V.J. Cunnane, J.B. McMonagle, Surface characterisation of electrografted random poly[carbazole-co-3-methylthiophene] copolymers on carbon fiber: XPS, AFM and Raman spectroscopy. Appl. Surf. Sci. 222, 148–165 (2004)CrossRefGoogle Scholar
  53. 53.
    H. Peng, G. Ma, K. Sun, J. Mu, X. Zhou, Z. Lei, A novel fabrication of nitrogen-containing carbon nanospheres with high rate capability as electrode materials for supercapacitors. RSC Adv. 5, 12034–12042 (2015)CrossRefGoogle Scholar
  54. 54.
    D. Sangamithirai, S. Munusamy, V. Narayanan, A. Stephen, A voltammetric biosensor based on poly(o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid. Mater. Sci. Eng. C 91, 512–523 (2018)CrossRefGoogle Scholar
  55. 55.
    E. Binkauskienė, V. Jasulaitiene, A. Lugauskas, Effect of Aspergillus niger Tiegh. L-10 on the physical and chemical properties of a polyaniline coating in the growth substrate. Synth. Met. 159, 1365–1368 (2009)CrossRefGoogle Scholar
  56. 56.
    S.A. Ansari, N. Parveen, T.H. Han, M.O. Ansari, M.H. Cho, Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells. Phys. Chem. Chem. Phys. 18, 9053–9060 (2016)CrossRefGoogle Scholar
  57. 57.
    H. Deng, L. Yao, Q.-A. Huang, Q. Su, J. Zhang, F. Zhang, G. Du, Facile assembly of a S@carbon nanotubes/polyaniline/graphene composite for lithium-sulfur batteries. RSC Adv. 7, 9819–9825 (2017)CrossRefGoogle Scholar
  58. 58.
    S. Dhanavel, E.A.K. Nivethaa, K. Dhanapal, V.K. Gupta, V. Narayanan, A. Stephen, α—MoO3/polyaniline composite for effective scavenging of Rhodamine B, Congo red and textile dye effluent. RSC Adv. 6, 28871–28886 (2016)CrossRefGoogle Scholar
  59. 59.
    V. Streibel, M. Hävecker, Y. Yi, J.J. Velasco Vélez, K. Skorupska, E. Stotz, A. Knop-Gericke, R. Schlögl, R. Arrigo, In situ electrochemical cells to study the oxygen evolution reaction by near ambient pressure X-ray photoelectron spectroscopy. Top. Catal. 61, 2064–2084 (2018)CrossRefGoogle Scholar
  60. 60.
    K. Ghosh, C.Y. Yue, M.M. Sk, R.K. Jena, Development of 3D urchin-shaped coaxial manganese dioxide@polyaniline (MnO2@PANI) composite and self-assembled 3D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application. ACS Appl. Mater. Interfaces 9, 15350–15363 (2017)CrossRefGoogle Scholar
  61. 61.
    C.-F. Chen, A. Mistry, P.P. Mukherjee, Probing impedance and microstructure evolution in lithium-sulfur battery electrodes. J. Phys. Chem. C 121, 21206–21216 (2017)CrossRefGoogle Scholar
  62. 62.
    L. Liu, J. Wang, C. Wang, G. Wang, Facile synthesis of graphitic carbon nitride/nanostructured α-Fe2O3 composites and their excellent electrochemical performance for supercapacitor and enzyme-free glucose detection applications. Appl. Surf. Sci. 390, 303–310 (2016)CrossRefGoogle Scholar
  63. 63.
    C. Xueting, Z. Xinxin, S. Shibin, G. Danxia, D. Lihua, Y. Yansheng, Z. Yanqiu, MnO2/g-C3N4 nanocomposite with highly enhanced supercapacitor performance. Nanotechnology 28, 135705 (2017)CrossRefGoogle Scholar
  64. 64.
    S.A. Ansari, M.H. Cho, Simple and large scale construction of MoS2-g-C3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications. Sci. Rep. 7, 43055 (2017)CrossRefGoogle Scholar
  65. 65.
    L. Zhang, M. Ou, H. Yao, Z. Li, D. Qu, F. Liu, J. Wang, J. Wang, Z. Li, Enhanced supercapacitive performance of graphite-like C3N4 assembled with NiAl-layered double hydroxide. Electrochim. Acta 186, 292–301 (2015)CrossRefGoogle Scholar
  66. 66.
    Q. Chen, Y. Zhao, X. Huang, N. Chen, L. Qu, Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. J. Mater. Chem. A 3, 6761–6766 (2015)CrossRefGoogle Scholar
  67. 67.
    S.-X. Zhou, X.-Y. Tao, J. Ma, L. Guo, Y.-B. Zhu, H.-L. Fan, Z.-S. Liu, X.-Y. Wei, Synthesis of flower-like PANI/g-C3N4 nanocomposite as supercapacitor electrode. Vacuum 149, 175–179 (2017)CrossRefGoogle Scholar
  68. 68.
    X. Chen, X. Zhu, Y. Xiao, X. Yang, PEDOT/g-C3N4 binary electrode material for supercapacitors. J. Electroanal. Chem. 743, 99–104 (2015)CrossRefGoogle Scholar
  69. 69.
    Q. Li, D. Xu, J. Guo, X. Ou, F. Yan, Protonated g-C3N4@polypyrrole derived N-doped porous carbon for supercapacitors and oxygen electrocatalysis. Carbon 124, 599–610 (2017)CrossRefGoogle Scholar
  70. 70.
    M. Ates, N. Uludag, T. Karazehir, F. Arıcan, Supercapacitor behavior of poly(carbazole-EDOT) derivatives/multi-walled carbon nanotubes, characterizations and equivalent circuit model evaluations. Polym. Plast. Technol. Eng. 53, 1070–1081 (2014)CrossRefGoogle Scholar
  71. 71.
    M. Ates, E. Özten, Supercapacitor device performances of polycarbazole/graphene and polycarbazole/nanoclay/graphene nanocomposites. Plast. Rubber Compos. 47, 192–201 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Panchatcharam Praveena
    • 1
  • Mathew Sheril Ann
    • 1
  • Saminathan Dhanavel
    • 1
  • Dharmalingam Kalpana
    • 2
  • Thandavarayan Maiyalagan
    • 3
  • Vengidusamy Narayanan
    • 4
  • Arumainathan Stephen
    • 1
    Email author
  1. 1.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia
  2. 2.Central Electrochemical Research Institute-Madras UnitChennaiIndia
  3. 3.Electrochemical Energy Laboratory, Department of ChemistrySRM Institute of Science and TechnologyKattankulathurIndia
  4. 4.Department of Inorganic ChemistryUniversity of MadrasChennaiIndia

Personalised recommendations