Investigation on the optical, electrical, dielectric, and magnetic properties of (1−x)La0.7Ca0.3MnO3/xCoFe2O4 nanocomposites

  • Bandana Panda
  • Krutika Lokapriya Routray
  • Subrata Karmakar
  • Dhrubananda BeheraEmail author


(1−x)La0.7Ca0.3MnO3/xCoFe2O4 (x = 0, 0.1, 0.3) nanocomposites are fabricated by glycine-nitrate method. XRD patterns and FTIR spectra confirm the phase formation of the nanocomposite. FESEM images divulge a reduction in the average particle size with enhanced incorporation of CoFe2O4. The band gap increases moderately followed by a blue shift in UV–Vis absorption peaks. Frequency-dependent impedance and dielectric properties are investigated at and above the room temperature. The impedance of the system gets enhanced while the conductivity reduces accordingly. Nyquist plot of impedance displays the contribution of diverse nanostructures on the electrical property using R(QgRg)(QgbRgb) circuit. Two types of conduction mechanism are observed in the studied system. The conduction in the low frequency regime is associated with correlated barrier hopping type conduction mechanism and in the high frequency regime is associated with overlapped large polaron tunneling conduction mechanism. The dielectric constant and tangent loss both are reduced on the incorporation of CoFe2O4. Comparatively low tangent loss value for x = 0.3 reflects suitability in high-frequency device applications. The saturation magnetization Ms and squareness ratio S is also high for x = 0.3 that is valuable for possible use of the (1−x)La0.7Ca0.3MnO3/xCoFe2O4 nanocomposites in memory devices.



The author Bandana Panda acknowledge for fellowship grants under Board of research in Nuclear Science (BRNS), Mumbai with Sanction No.: 37(3)/14/19/2014-BRNS/2157 dated 22.12.2014.


  1. 1.
    S. Komarneni, Nanocornposites. J. Mater. Chem. 2(12), 1219–1230 (1992)CrossRefGoogle Scholar
  2. 2.
    K. Mukhopadhyay, A.S. Mahapatra, S. Sutradhar, P.K. Chakrabarti, Enhanced magnetic behavior, exchange bias effect, and dielectric property of BiFeO3 incorporated in (BiFeO3)0.5(Co0.4Zn0.4Cu0.2 Fe2O4)0.5 nanocomposite. AIP Adv. 4, 037112 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Maitra, J. Roy, Advances in ceramic matrix composites: 3-nanoceramic matrix composites: types, processing, and applications. Woodhead Publishing Series in Composites Science and Engineering (2018).
  4. 4.
    G. Muscas, P. Anil Kumar, G. Barucca, G. Concas, G. Varvaro, R. Mathieu, D. Peddis, Designing new ferrite/manganite nanocomposites. Nanoscale 8, 2081–2089 (2016)CrossRefGoogle Scholar
  5. 5.
    B.B. Nayak, A. Mondal, S. Vitta, D. Bahadur, Effect of nickel ferrite on electrical and magnetic properties in LCMO:Nickel ferrite nanocomposites. IEEE Trans. Magn. 47(10), 2728–2731 (2011)CrossRefGoogle Scholar
  6. 6.
    M.A. Ahmed, S.T. Bishay, S.M. Salem-Gaballah, Structural characterization and magnetic properties of smart CuCd ferrite/LaSrCo manganite nanocomposites. J. Magn. Magn. Mater. 334, 96–101 (2013)CrossRefGoogle Scholar
  7. 7.
    C.S. Hong, W.S. Kim, N.H. Hur, Transport and magnetic properties in the ferromagnetic regime of La1–xCaxMnO3. Phys. Rev. B 63, 092504 (2001)CrossRefGoogle Scholar
  8. 8.
    M.H. Khan, S. Pal, E. Bose, Frequency-dependent dielectric permittivity and electric modulus studies and an empirical scaling in (100–x) BaTiO3/(x) La0. 7Ca0.3MnO3 composites. Appl. Phys. A 118, 907–912 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Mo, H. Nan, X. Lang, S. Liu, L. Qiao, X. Hu, H. Tian, Influence of calcium doping on performance of LaMnO3 supercapacitors. Ceram. Int. 44, 9733–9741 (2018)CrossRefGoogle Scholar
  10. 10.
    D. Markovic, V. Kusigerski, M. Tadic, J. Blanusa, M.V. Antisarib, V. Spasojevic, Magnetic properties of nanoparticle La0.7Ca0.3MnO3 prepared by glycine–nitrate method without additional heat treatment. Scripta Mater. 59, 35–38 (2008)CrossRefGoogle Scholar
  11. 11.
    A. Arabi, M. Fazli, M.H. Ehsani, Synthesis and characterization of calcium-doped lanthanum manganite nanowires as a photocatalyst for degradation of methylene blue solution under visible light irradiation. Bull. Mater. Sci. 41, 77 (2018)CrossRefGoogle Scholar
  12. 12.
    J.Y.T. Wei, N.C. Yeh, R.P. Vasquez, Tunneling evidence of half-metallic ferromagnetism in La0.7Ca0.3MnO3. Phys. Rev. Lett. 79, 5150–5153 (1997)CrossRefGoogle Scholar
  13. 13.
    L.E. Hueso, P. Sande, D.R. Miguens, J. Rivas, F. Rivadulla, M.A. Lopez-Quintela, Tuning of the magnetocaloric effect in La0.67Ca0.33MnO3–δ nanoparticles synthesized by sol–gel techniques. J. Appl. Phys. 91, 9943–9947 (2002)CrossRefGoogle Scholar
  14. 14.
    M.H. Phan, S.C. Yu, N.H. Hur, Y.H. Jeong, Large magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal. J. Appl. Phys. 96, 1154–1158 (2004)CrossRefGoogle Scholar
  15. 15.
    A. Yakubu, Z. Abbas, N.A. Ibrahim, M. Hashim, Effect of temperature on structural, magnetic and dielectric properties of cobalt ferrite nanoparticles prepared via co-precipitation method. Phys. Sci. Int. J. 8, 1–5 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Kumar, R.C. Srivastava, P. Negi, H.M. Agrawal, K. Asokan, Dielectric behaviour of cobalt ferrite nanoparticles. Int. J. Electr. Electron. Eng. (IJEEE) 2, 59–66 (2013)Google Scholar
  17. 17.
    N.R. Panchal, R.B. Jotania, Cobalt ferrite nano particles by microemulsion route. Nanotechnol. Nanosci. 1, 17–18 (2010)Google Scholar
  18. 18.
    W. Xia, L. Li, H. Wu, P. Xue, X. Zhu, Structural, morphological, and magnetic properties of sol-gel derived La0.7Ca0.3MnO3 manganite nanoparticles. Ceram. Int. 43, 3274–3283 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Staruch, D. Hires, D. Violette, D. Navarathne, G.A. Sotzing, M. Jain, Structural and magnetic properties of CoFe2O4 and Co0.5Zn0.5Fe2O4 nanoparticles for the magnetoelectric composite films. Integr. Ferroelectr. 131, 102–109 (2011)CrossRefGoogle Scholar
  20. 20.
    J.R. Chocha, P.A. Chhelavda, J.A. Bhalodia, Calcination temperature effect on La0.67Ca0.33MnO3 nanoparticle using simple citrate pyrolysis process. Trans. Indian Inst. Met. 64, 159 (2011)CrossRefGoogle Scholar
  21. 21.
    L. Kebin, R. Cheng, S. Wang, Y. Zhang, Infrared transmittance spectra of the granular perovskite. J. Phys.: Condens. Matter. 10, 4315 (1998)Google Scholar
  22. 22.
    K.L. Routray, S. Saha, D. Sanyal, D. Behera, Role of rare-earth (Nd3+) ions on structural, dielectric, magnetic and Mossbauer properties of nano-sized CoFe2O4: useful for high frequency application. Mater. Res. Expr. 6, 026107 (2018)CrossRefGoogle Scholar
  23. 23.
    A.O. Turky, M.M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Tailoring optical, magnetic and electric behavior of lanthanum strontium manganite La1–xSrxMnO3 (LSM) nanopowders prepared via a co-precipitation method with different Sr2+ ion contents. RSC Adv. 6, 17980–17986 (2016)CrossRefGoogle Scholar
  24. 24.
    S.S. Zoran, S. Popovic, F.R. Vukajlovic, Electronic structure of the perovskite oxides: La1–xCaxMnO3. Phys. Rev. Lett. 76, 960–963 (1996)CrossRefGoogle Scholar
  25. 25.
    A.O. Turky, M.M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Optical, electrical and magnetic properties of lanthanum strontium manganite La1 – xSrxMnO3 synthesized through the citrate combustion method. Phys. Chem. Chem. Phys. 19, 6878–6886 (2017)CrossRefGoogle Scholar
  26. 26.
    R.G. Tanguturi, T. Bora, S. Ravi, D. Pamu, Structural, optical and magnetic properties of Nd0.7Sr0.3MnO3 thin films. Phys. Proc. 54, 70–74 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Huang, G. Sun, J. Hu, T. Jiao, Single-step synthesis of LaMnO3/MWCNT nanocomposites and their photocatalytic activities. Nanomater. Nanotechnol. 4, 27 (2014)CrossRefGoogle Scholar
  28. 28.
    A.J. Millis, Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147–150 (1998)CrossRefGoogle Scholar
  29. 29.
    S. Satpathy, Electronic structure of the perovskite oxides: La1 – xCaxMnO3. Phys. Rev. Lett. 76, 760–764 (1996)CrossRefGoogle Scholar
  30. 30.
    M.A. Rahman, M.A. Gafur, M.A. Razzaque Sarker, Impact of doping on structural, electronic and optical properties of cobalt ferrite prepared by solid-state reaction. Int. J. Innov. Res. Adv. Eng. (IJIRAE) 2, 99–107 (2015)Google Scholar
  31. 31.
    D.C. Culita, G. Marinescu, L. Patron, N. stanica, Synthesis and characterization of cobalt ferrite nanoparticles coated with dehydrocholate anions. Rev. Roum. Chim. 51(6), 503–508 (2006)Google Scholar
  32. 32.
    M. Lenglet, F. Hochu, J. Durr, Optical properties of mixed cobalt ferrites. J. Phys. IV Colloque 07, 259–260 (1997)Google Scholar
  33. 33.
    B.S. Holinsworth, D. Mazumdar, H. Sims, Q.C. Sun, M.K. Yurtisigi, S.K. Sarker, A. Gupta, W.H. Butler, J.L. Musfeldt, Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Appl. Phys. Lett. 103, 082406 (2013)CrossRefGoogle Scholar
  34. 34.
    P.J.L. Herve, L.K.J. Vandamme, General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol. 35, 609–615 (1994)CrossRefGoogle Scholar
  35. 35.
    W.J. Plieth, H. Bruckner, Experimental determination of the complex Fresnel reflection coefficient of a three-phase system by combination of modulated reflectance spectroscopy and modulated interferometry. Surf. Sci. 66, 357–360 (1977)CrossRefGoogle Scholar
  36. 36.
    H. Kogelnik, Theory of dielectric waveguides. In integrated optics. Springer 2, 13–81 (1975)Google Scholar
  37. 37.
    S. Gowreesan, A.R. Kumar, Structural, magnetic, and electrical property of nanocrystalline perovskite structure of iron manganite (FeMnO3). Appl. Phys. A 123, 689 (2017)CrossRefGoogle Scholar
  38. 38.
    N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Impedance spectroscopy of multiferroic PbZrxTi1–xO3/CoFe2O4 layered thin films. Phys. Rev. B 77, 014111 (2008)CrossRefGoogle Scholar
  39. 39.
    W. Chen, W. Zhu, O.K. Tan, X.F. Chen, Frequency and temperature dependent impedance spectroscopy of cobalt ferrite composite thick films. J. Appl. Phys. 108, 034101 (2010)CrossRefGoogle Scholar
  40. 40.
    R.K. Panda, R. Muduli, S.K. Kar, D. Behera, Dielectric relaxation and conduction mechanism of cobalt ferrite nanoparticles. J. Alloy. Compd. 615, 899–905 (2014)CrossRefGoogle Scholar
  41. 41.
    A.K. Pradhan, T.K. Nath, S. Saha, Impedance spectroscopy and electric modulus behavior of molybdenum doped cobalt–zinc ferrite. Mater. Res. Expr. 4, 076107 (2017)CrossRefGoogle Scholar
  42. 42.
    S. Karmakar, S. Varma, D. Behera, Investigation of structural and electrical transport properties of nano-flower shaped NiCo2O4 supercapacitor electrode materials. J. Alloy. Compd. 757, 49–59 (2018)CrossRefGoogle Scholar
  43. 43.
    M.H. Khan, S. Pal, E. Bose, Room temperature frequency-dependent complex impedance and conductivity behavior of BaTiO3–La0.7Ca0.3MnO3 composites. Can. J. Phys. 91, 1029–1033 (2013)CrossRefGoogle Scholar
  44. 44.
    M. Atif, M. Idrees, M. Nadeem, M. Siddique, M.W. Ashraf, Investigation on the structural, dielectric and impedance analysis of manganese substituted cobalt ferrite i.e, Co1– xMnxFe2O4 (0.0 ≤ x ≤ 0.4). RSC Adv. 6, 20876–20885 (2016)CrossRefGoogle Scholar
  45. 45.
    Y.B. Taher, A. Oueslati, N.K. Maaloul, K. Khirouni, M. Gargouri, Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Appl. Phys. A 120, 1537–1543 (2015)CrossRefGoogle Scholar
  46. 46.
    P.M. Botta, J. Mira, A. Fondado, J. Rivas, Dielectric behavior of La1–xCaxMnO3 (0.4 x 0.5). Bol. Soc. Esp. Ceram. 45, 163–168 (2006)CrossRefGoogle Scholar
  47. 47.
    H. Kumar, R.C. Srivastava, P. Negi, H.M. Agrawal, K. Asokan, Dielectric behaviour of cobalt ferrite nanoparticles. Int. J. Electr. Electron. Eng. 2, 59–66 (2013)Google Scholar
  48. 48.
    S.C. Watawe, B.D. Sarwade, S.S. Bellad, B.D. Sutar, B.K. Chougule, Microstructure, frequency and temperature-dependent dielectric properties of cobalt-substituted lithium ferrites. J. Magn. Magn. Mater. 214, 55–60 (2000)CrossRefGoogle Scholar
  49. 49.
    R. Sharma, P. Thakur, M. Kumar, P. Sharma, V. Sharma, Nanomaterials for high frequency device and photocatalytic applications: Mg-Zn-Ni ferrites. J. Alloy. Compd. 746, 532–539 (2018)CrossRefGoogle Scholar
  50. 50.
    A.B. Shinde, Dielectric behavior of the cobalt ferrite nanoparticles synthesized by the sol-gel auto-combustion method. Int. J. Res. Eng. Appl. Sci. 6, 71–74 (2016)Google Scholar
  51. 51.
    Y.J. Kim, S. Kumar, Y.J. Seo, J. Chang, C.G. Lee, B.H. Koo, Electrical transport properties and magnetoresistance of (La0.7Ca0.3MnO3)1–x/(CuFe2O4)x composites. Surf. Rev. Lett. 17, 33–38 (2010)CrossRefGoogle Scholar
  52. 52.
    K.L. Routray, D. Behera, Enhancement in conductivity and dielectric properties of rare-earth (Gd3+) substituted nano-sized CoFe2O4. J. Mater. Sci.: Mater. Electron. 29, 14248–14260 (2018)Google Scholar
  53. 53.
    S.R. Mohapatra, A. Swain, C.S. Yadav, S.D. Kaushik, A.K. Singh, Unequivocal evidence of enhanced magnetodielectric coupling in Gd3+ substituted multiferroic Bi2Fe4O9. Rsc Adv. 6, 112282 (2016)CrossRefGoogle Scholar
  54. 54.
    P. Kumar, N. Shankhwar, A. Srinivasan, M. Kar, Oxygen octahedra distortion induced structural and magnetic phase transitions in Bi1–xCaxFe1–xMnxO3 ceramics. J. Appl. Phys. 117, 194103 (2015)CrossRefGoogle Scholar
  55. 55.
    C. Tannous, J. Gieraltowski, The Stoner–Wohlfarth model of ferromagnetism. Eur. J. Phys. 29, 475–487 (2008)CrossRefGoogle Scholar
  56. 56.
    P. Lopadczak, A. Bajorek, K. Prusik, M. Zubko, G. Chełkowska, Magnetic hardening induced in RCo5 (R = Y, Gd, Sm) by short HEBM. Acta Phys. Pol. A 133, 3 (2018)CrossRefGoogle Scholar
  57. 57.
    T.P. Gavrilova, R.M. Eremina, I.V. Yatsyk, I.F. Gilmutdinov, A.G. Kiiamov, N.M. Lyadov, Y.V. Kabirov, Magnetic properties of (La0.7Sr0.3MnO3)x(CaCu3Ti4O12)1–xnanostructured composites. J. Alloy. Compd. 714, 213–224 (2017)CrossRefGoogle Scholar
  58. 58.
    U.B. Shinde, S.E. Shirsath, S.M. Patange, S.P. Jadhav, K.M. Jadhav, V.L. Patil, Preparation and characterization of Co substituted Li–Dy ferrite ceramics. Ceram. Int. 39, 5227–5234 (2013)CrossRefGoogle Scholar
  59. 59.
    P. Kumar, M. Kar, Tuning of net magnetic moment in BiFeO3 multiferroics by co-substitution of Nd and Mn. Phys. B 448, 90–95 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyNational Institute of Technology, RourkelaRourkelaIndia

Personalised recommendations