Probing the structure–property relationship of a new semiorganic nonlinear optical crystal: catena-poly[bis(4-methylbenzylammonium) [[dibromidocadmate(II)]-di-l-bromido]]

  • R. Aarthi
  • C. Ramachandra RajaEmail author


A new semiorganic single crystal, catena-Poly[bis(4-methylbenzylammonium) [[dibromidocadmate(II)]-di-l-bromido]],[4MLBDCB], has been developed by evaporating the solvent at a 37 °C. It crystallizes in centrosymmetric space group Pnma. In the crystal structure, 4-methylbenzylammonium cation and tetrabromido cadmate anion are connected by N–H⋯Br and C-H⋯Br hydrogen bonds. Functional groups vibrations of 4MLBDCB were analysed by FT-Raman and FTIR spectroscopy. The stretching vibration of NH and CH shifted towards lower frequency side and their bending vibrations (–NH, –CH) to higher frequency when compared with pure 4 methylbenzylamine (4MLBA) vibrations. The observed variations in CH bond length are discussed. Presence of Raman active CdBr42− vibrations ensures the formation of the molecule. Transmittance bandwidth of the crystal extends from 260 and 1100 nm. In 1H and 13C NMR spectra, the observed variations in the chemical shifts are interpreted through intermolecular interactions. The presence of hydrogen bonds enhances the third order nonlinear susceptibility (χ3) value of the grown crystal and found to be 5.04 × 10−6 esu. The third order nonlinear optical parameters such as absorption coefficient (β) and refractive index (n2) are also determined using Z-scan technique.



The authors thank the sophisticated analytical instruments facility (SAIF), Indian Institute of Technology (IITM), Chennai for providing single crystal XRD and gratefully acknowledge the Instrumentation centre of St. Joseph’s College, Trichy for recording UV–Vis–NIR, FTIR and SASTRA University for providing FT Raman spectra. It is worth mentioning the scientific/technical support extended by Gandhigram Rural Institute for the NMR spectrum. Also, the authors place on record special thanks to Dr. G. Vinitha, VIT, Chennai for providing them with third order nonlinear testing facility for recording Z-scan measurement.


  1. 1.
    R. Kefi, M. Zeller, F. Lefebvre, C. Ben Nasr, Int. J. Inorg. Chem. (2011) 1–7Google Scholar
  2. 2.
    A.C. Sanchez, B. Julián, P. Belleville, M. Popall, J. Mater. Chem. 15, 3559–3592 (2005)CrossRefGoogle Scholar
  3. 3.
    A.L. Mohana Reddy, S.R. Gowda, M.M. Shaijumon, P.M. Ajayan, Adv. Mater. 24, 5045–5064 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Sanchez, P. Belleville, M. Popall, L. Nicole, Chem. Soc. Rev. 40, 696–753 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Dolbecq, E. Dumas, C.R. Mayer, P. Mialane, Chem. Rev. 110, 6009–6048 (2010)CrossRefGoogle Scholar
  6. 6.
    Y.J. Ding, X. Mu, X.J. Gu, Nonlinear Opt. Phys. Mater. 9, 21–53 (2000)Google Scholar
  7. 7.
    T.P. Srinivasan, R. Indirajith, R. Gopalakrishnan, J. Cryst. Growth 318, 762–767 (2011)CrossRefGoogle Scholar
  8. 8.
    X. Zhang, W. Liu, G.Z. Wei, D. Banerjee, Z.C. Hu, J. Li, J. Am. Chem. Soc. 136, 14230–14236 (2014)CrossRefGoogle Scholar
  9. 9.
    W. Liu, Y. Fang, G.Z. Wei, S.J. Teat, K. Xiong, Z.C. Hu, W.P. Lustig, J. Li, J. Am. Chem. Soc. 137, 9400–9408 (2015)CrossRefGoogle Scholar
  10. 10.
    H.Y. Ye, Q.H. Zhou, X.H. Niu, W.Q. Liao, D.W. Fu, Y. Zhang, Y.-M. You, J.L. Wang, Z.N. Chen, R.G. Xiong, J. Am. Chem. Soc. 137, 13148–13154 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, W.Q. Liao, D.W. Fu, H.Y. Ye, Z.N. Chen, R.G. Xiong, J. Am. Chem. Soc. 137, 4928–4931 (2015)CrossRefGoogle Scholar
  12. 12.
    Z.P. Wang, J.Y. Wang, J.R. Li, M.L. Feng, G.D. Zou, X.Y. Huang, Chem. Commun. 51, 3094–3097 (2015)CrossRefGoogle Scholar
  13. 13.
    R. Aarthi, A. Thiruvalluvar, C. Ramachandra Raja, IUCrData 2, x171213 (2017)CrossRefGoogle Scholar
  14. 14.
    R. Aarthi, A. Thiruvalluvar, C. Ramachandra Raja, IUCrData 3, x180270 (2018)CrossRefGoogle Scholar
  15. 15.
    R. Aarthi, A. Thiruvalluvar, C. Ramachandra Raja, IUCrData 3, x180648 (2018)CrossRefGoogle Scholar
  16. 16.
    R. Aarthi, A. Thiruvalluvar, C. Ramachandra Raja, IUCrData 3, x180780 (2018)CrossRefGoogle Scholar
  17. 17.
    J. Catala, J.P. Catala, Phys. Chem. Chem. Phys. 13, 4072–4082 (2011)CrossRefGoogle Scholar
  18. 18.
    W.J. Xu, C.T. He, C.M. Ji, S.L. Chen, R.K. Huang, R.B. Lin, W. Xue, J.H. Luo, W.X. Zhang, X.M. Chen, Adv. Mater. 28, 5886–5890 (2016)CrossRefGoogle Scholar
  19. 19.
    H.Y. Ye, Y. Zhang, D.W. Fu, R.G. Xiong, Angew. Chem. Int. Ed. 53, 11242–11247 (2014)CrossRefGoogle Scholar
  20. 20.
    L.L. Qin, H.Y. Ye, D.Y. Wang, Inorg. Chem. Commun. 46, 47–50 (2014)CrossRefGoogle Scholar
  21. 21.
    W.Q. Liao, H.Y. Ye, Y. Zhang, R.G. Xiong, Dalton Trans. 44, 0614–10620 (2015)Google Scholar
  22. 22.
    J. Balaji, S. Prabu, D. Sajan, P. Srinivasan, J. Mol. Struct. 1137, 142–149 (2017)CrossRefGoogle Scholar
  23. 23.
    K. Vikram, R. Nandi, R.K. Singh, Spectrachim Acta A 112, 377–383 (2013)CrossRefGoogle Scholar
  24. 24.
    W. Macklin, A. Robert, Inorg. Chem. 9(4) 821–827 (1970)CrossRefGoogle Scholar
  25. 25.
    P. Karuppasamy, V. Sivasubramani, M. Senthil Pandian, P. Ramasamy, RSC Adv. 6, 109105–109123 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Karthigha, S. Kalainathan, F. Hamada, M. Yamada, Y. Kondo, RSC Adv. 6, 33159–33169 (2016)CrossRefGoogle Scholar
  27. 27.
    C. Lei, Z. Yang, B. Zhang, M. H. Lee, Q. Jing, Z. Chen, X.C. Huang, Y. Wang, S. Pan, M.R. Janjua, Phys. Chem. 16, 20089–20096 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Government Arts College (Autonomous)KumbakonamIndia

Personalised recommendations