Advertisement

An 18.9% efficient black silicon solar cell achieved through control of pretreatment of Ag/Cu MACE

  • Pengfei Zhang
  • Hengchao Sun
  • Ke Tao
  • Rui JiaEmail author
  • Guoyu Su
  • Xiaowan Dai
  • Zhi Jin
  • Xinyu Liu
Article
  • 36 Downloads

Abstract

With diamond wire sawn (DWS) technique becoming mainstream of multicrystalline silicon (mc-Si) solar cells, the corresponding texturing technology for light harvesting is more prominent. In order to further reduce production costs of mature Ag-based metal assisted chemical etching (MACE), an Ag/Cu MACE method was proposed. In this paper, the influence of different pretreatment method which has few studies reported before was investigated. The experimental results indicated that appropriate pretreatment could contribute to achieve uniform nanostructure, low reflectivity and recombination velocities of the silicon wafers. The light trapping mechanism of different texturing method was analyzed. The impact of nanostructure on surface passivation was also studied. Industrial large area solar cells have been fabricated by applying different texturing method. The results showed that the pretreatment using hot alkaline solution with texturing additive was more beneficial to achieve high conversion efficiency. Finally, an efficiency of 18.91% was obtained on DWS mc-Si wafer, which is 0.4% absolutely higher than the cells with traditional acid texturing.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 110751402347, 61274059, 51702355, 51602340, 61674167).

References

  1. 1.
    F. Cao, K.X. Chen, J.J. Zhang, X.Y. Ye, J.J. Li, S. Zou, X.D. Su, Next-generation multi-crystalline silicon solar cells: diamond-wire sawing, nano-texture and high efficiency. Sol. Energy Mater. Sol. Cells 141, 132–138 (2015)CrossRefGoogle Scholar
  2. 2.
    N. Watanabe, Y. Kondo, D. Ide, T. Matsuki, H. Takato, I. Sakata, Characterization of polycrystalline silicon wafers for solar cells sliced with novel fixed-abrasive wire. Prog. Photovolt. 18(7), 485–490 (2010)CrossRefGoogle Scholar
  3. 3.
    H. Meng, L. Zhou, Mechanical behavior of diamond-sawn multi-crystalline silicon wafers and its improvement. Silicon 6(2), 129–135 (2014)CrossRefGoogle Scholar
  4. 4.
    W. Chen, X. Liu, M. Li, C. Yin, L. Zhou, On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers. Mater. Sci. Semicond. Process. 27, 220–227 (2014)CrossRefGoogle Scholar
  5. 5.
    Y.C. Niu, H.-T. Liu, X.-J. Liu, Y.-S. Jiang, X.-K. Ren, P. Cai, T.-G. Zhai, Study on nano-pores enlargement during Ag-assisted electroless etching of diamond wire sawn polycrystalline silicon wafers. Mater. Sci. Semicond. Process. 56, 119–126 (2016)CrossRefGoogle Scholar
  6. 6.
    B. Sopori, S. Devayajanam, P. Basnyat, Surface characteristics and damage distributions of diamond wire sawn wafers for silicon solar cells, AIMS Mater. Sci. 3, 669–685 (2016)CrossRefGoogle Scholar
  7. 7.
    P. Basu, H. Dhasmana, D. Varandani, B. Mehta, D. Thakur, A cost-effective alkaline multicrystalline silicon surface polishing solution with improved smoothness. Sol. Energy Mater. Sol. Cells 93(10), 1743–1748 (2009)CrossRefGoogle Scholar
  8. 8.
    N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, K. Ashida, Etch stop of silicon surface induced by tribo-nanolithography. Nanotechnology 16(8), 1411–1414 (2005)CrossRefGoogle Scholar
  9. 9.
    U. Gangopadhyay, S.K. Dhungel, K. Kim, U. Manna, P.K. Basu, H.J. Kim, B. Karunagaran, K.S. Lee, J.S. Yoo, J. Yi, Novel low cost chemical texturing for very large area industrial multi-crystalline silicon solar cells. Semicond. Sci. Technol. 20(9), 938–946 (2005)CrossRefGoogle Scholar
  10. 10.
    C.H. Crouch, J.E. Carey, J.M. Warrender, M.J. Aziz, E. Mazur, F.Y. Genin, Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Appl. Phys. Lett. 84(11), 1850–1852 (2004)CrossRefGoogle Scholar
  11. 11.
    D.Q. Liu, D.J. Blackwood, An EIS investigation into the influence of HF concentration on porous silicon formation. J. Electrochem. Soc. 161(3), E44–E52 (2014)CrossRefGoogle Scholar
  12. 12.
    W.K. To, C.H. Tsang, H.H. Li, Z. Huang, Fabrication of n-type mesoporous silicon nanowires by one-step etching. Nano Lett. 11(12), 5252–5258 (2011)CrossRefGoogle Scholar
  13. 13.
    Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gosele, Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23(2), 285–308 (2011)CrossRefGoogle Scholar
  14. 14.
    F. Toor, J. Oh, H.M. Branz, Efficient nanostructured ‘black’ silicon solar cell by copper-catalyzed metal-assisted etching. Prog. Photovolt. 23(10), 1375–1380 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Cao, Y. Zhou, F. Liu, Y. Zhou, Y. Zhang, Y. Liu, Y. Guo, Progress and mechanism of Cu assisted chemical etching of silicon in a low Cu2+ concentration region. ECS J. Solid State Sci. Technol. 4(8), P331–P336 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Robbins, B. Schwartz, Chemical etching of silicon 1. The system HF,HNO3, and H2O. J. Electrochem. Soc. 106(6), 505–508 (1959)CrossRefGoogle Scholar
  17. 17.
    J. Acker, T. Koschwitz, B. Meinel, R. Heinemann, C. Blocks, in HF/HNO 3 Etching of the Saw Damage, ed. by R. Brendel, A. Aberle, A. Cuevas, S. Glunz, G. Hahn, J. Poortmans, R. Sinton, A. Weeber. Proceedings of the 3rd International Conference on Crystalline Silicon Photovoltaics. (Springer, Macon, 2013), pp. 223–233Google Scholar
  18. 18.
    H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel, Anisotropic etching of crystalline, silicon in alkaline-solutions 1. orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137(11), 3612–3626 (1990)CrossRefGoogle Scholar
  19. 19.
    M.A. Green, Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions. Prog. Photovolt. 10(4), 235–241 (2002)CrossRefGoogle Scholar
  20. 20.
    M.P. Lumb, C.G. Bailey, J.G.J. Adams, G. Hillier, F. Tuminello, V.C. Elarde, R.J. Walters, Extending the 1-D hovel model for coherent and incoherent back reflections in homojunction solar cells. IEEE J. Quantum Electron. 49(5), 462–470 (2013)CrossRefGoogle Scholar
  21. 21.
    K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, S. Lee, Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem-A Eur. J. 12(30), 7942–7947 (2006)CrossRefGoogle Scholar
  22. 22.
    H.-C. Yuan, V.E. Yost, M.R. Page, P. Stradins, D.L. Meier, H.M. Branz, Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules, Appl. Phys. Lett. 95(12), 123501 (2009)CrossRefGoogle Scholar
  23. 23.
    J.E. Sipe, R.W. Boyd, Nonlinear susceptibility of composite, optical-materials in the Maxwell Garnett model, Phys. Rev. A 46(3), 1614–1629 (1992)CrossRefGoogle Scholar
  24. 24.
    S. Chattopadhyay, Y.F. Huang, Y.J. Jen, A. Ganguly, K.H. Chen, L.C. Chen, Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R 69(1–3), 1–35 (2010)CrossRefGoogle Scholar
  25. 25.
    L.A. Catalan, Some computed optical properties of antireflection, coatings. J. Opt. Soc. Am. 52(4), 437 (1962)CrossRefGoogle Scholar
  26. 26.
    A. Dastgheib-Shirazi, F. Book, H. Haverkamp, B. Raabe, G. Hahn, Investigations of high refractive silicon nitride layers for etched back emitters: enhanced surface passivation for selective emitter concept 24th European Photovoltaic Solar Energy Conference, 21. Sep 2009–25. Sep 2009, Proceedings of the 24th European PV SEC, Hamburg, 2009, pp. 1600–1604Google Scholar
  27. 27.
    S. Pingel, O. Frank, M. Winkler, S. Daryan, T. Geipel, H. Hoehne, J. Berghold, IEEE, Potential induced degradation of solar cells and panels, 35th IEEE Photovoltaic Specialists Conference 2010, pp. 2817–2822Google Scholar
  28. 28.
    W. Soppe, H. Rieffe, A. Weeber, Bulk and surface passivation of silicon solar cells accomplished by silicon nitride deposited on industrial scale by microwave PECVD. Prog. Photovolt. 13(7), 551–569 (2005)CrossRefGoogle Scholar
  29. 29.
    T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, Y. Uraoka, Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence, Appl. Phys. Lett. 86(26), 262108 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pengfei Zhang
    • 1
    • 2
  • Hengchao Sun
    • 1
  • Ke Tao
    • 1
  • Rui Jia
    • 1
    Email author
  • Guoyu Su
    • 1
    • 2
    • 3
  • Xiaowan Dai
    • 1
  • Zhi Jin
    • 1
  • Xinyu Liu
    • 1
  1. 1.Institute of MicroelectronicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Jiangsu R&D Center for Internet of ThingsJiangsuChina

Personalised recommendations